Chaotic vibrations of flexible infinite length cylindrical panels using the Kirchhoff-Love model

被引:5
作者
Awrejcewicz, J. [1 ]
Krysko, V. A. [2 ]
Nazar'iantz, V. [2 ]
机构
[1] Tech Univ Lodz, Dept Automat & Biomech, PL-90924 Lodz, Poland
[2] Saratov Natl Tech Univ, Dept Math, Saratov 410054, Russia
关键词
Chaos; Flexible panels; Differential equations; Shells;
D O I
10.1016/j.cnsns.2005.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Treated as continuous deformable systems with an infinite number of degrees of freedom, flexible infinite length cylindrical panels subject to harmonic load are studied. Using the finite difference method with respect to spatial coordinates, the continuous system is reduced to lumped one governed by ordinary differential equations. These equations are transformed to a normal form and then solved numerically using the fourth order Runge-Kutta method. In order to trace and explain vibrational behaviour, dependencies w(max)(q(0)) and Lyapunov exponents are calculated for panels with parameter value k(x) = 48. The corresponding charts of the control parameters {q(0), omega(q)} are also reported. Novel scenarios yielding chaotic dynamics exhibited by cylindrical panels are illustrated and discussed. (C) 2005 Elsevier B. V. All rights reserved.
引用
收藏
页码:519 / 542
页数:24
相关论文
共 20 条
[1]   Two-mode response of simply supported, rectangular laminated plates [J].
Abe, A ;
Kobayashi, Y ;
Yamada, G .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1998, 33 (04) :675-690
[2]  
[Anonymous], USP FIZ NAUK
[3]  
Arafat HN, 2003, P DETC 03 ASME DES E, P11
[4]   Spatio-temporal chaos and solitons exhibited by von Karman model [J].
Awerjcewicz, J ;
Krysko, VA ;
Krysko, AV .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (07) :1465-1513
[5]   Complex parametric vibrations of flexible rectangular plates [J].
Awrejcewicz, J ;
Krysko, VA ;
Krysko, AV .
MECCANICA, 2004, 39 (03) :221-244
[6]   Bifurcations of a thin plate-strip excited transversally and axially [J].
Awrejcewicz, J ;
Krysko, VA ;
Narkaitis, GG .
NONLINEAR DYNAMICS, 2003, 32 (02) :187-209
[7]  
AWREJCEWICZ J, 2002, NONCLASSIC THERMOELA
[8]  
Awrejcewicz J, 2005, INT J BIFURCAT CHAOS, V15
[9]  
AWREJCEWICZ J, 2006, COMMUN NONLINEAR SCI, V11, P95, DOI DOI 10.1016/J.CNSCN.2003.11.002
[10]  
BISWAS P, 1985, P 4 INT C NUM METH T, P1493