Native point defects in MoS2 and their influences on optical properties by first principles calculations

被引:12
作者
Saha, Ashim Kumar [1 ]
Yoshiya, Masato [1 ,2 ]
机构
[1] Osaka Univ, Dept Adapt Machine Syst, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[2] Japan Fine Ceram Ctr, Nanostruct Res Lab, 2-4-1 Mutsuno, Nagoya, Aichi 4568587, Japan
关键词
MoS2; Refractive index; Extinction coefficient; Defect; Density functional theory; Optical property; LARGE-AREA; GROWTH; EXCITATIONS; NANOSHEETS; SPECTRA; LAYER; FILMS;
D O I
10.1016/j.physb.2017.07.026
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Stability of native point defect species and optical properties are quantitatively examined through first principles calculations in order to identify possible native point defect species in MoS2 and its influences on electronic structures and resultant optical properties. Possible native point defect species are identified as functions of thermodynamic environment and location of Fermi-level in MoS2. It is found that sulphur vacancies can be introduced more easily than other point defect species which will create impurity levels both in bandgap and in valence band. Additionally, antisite Mo and/or Mo vacancies can be created depending on chemical potential of sulphur, both of which will create impurity levels in bandgap and in valence band. Those impurity levels result in pronounced photon absorption in visible light region, though each of these point defects alone has limited impact on the optical properties unless their concentration remained low. Thus, attention must be paid when intentional impurity doping is made to MoS2 to avoid unwanted modification of optical properties of MoS2. Those impurity may enable further exploitation of photovoltaic energy conversion at longer wavelength.
引用
收藏
页码:184 / 194
页数:11
相关论文
共 67 条
[1]  
[Anonymous], 1998, J PHYS CHEM REF DATA
[2]   2D Layered Materials of Rare-Earth Er-Doped MoS2 with NIR-to-NIR Down- and Up-Conversion Photoluminescence [J].
Bai, Gongxun ;
Yuan, Shuoguo ;
Zhao, Yuda ;
Yang, Zhibin ;
Choi, Sin Yuk ;
Chai, Yang ;
Yu, Siu Fung ;
Lau, Shu Ping ;
Hao, Jianhua .
ADVANCED MATERIALS, 2016, 28 (34) :7472-7477
[3]   ABINITIO CALCULATION OF THE MACROSCOPIC DIELECTRIC-CONSTANT IN SILICON [J].
BARONI, S ;
RESTA, R .
PHYSICAL REVIEW B, 1986, 33 (10) :7017-7021
[4]   KRAMERS-KRONIG ANALYSIS OF THE REFLECTIVITY SPECTRA OF 2H-MOS2, 2H-MOSE2 AND 2H-MOTE2 [J].
BEAL, AR ;
HUGHES, HP .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (05) :881-890
[5]   Stretching and Breaking of Ultrathin MoS2 [J].
Bertolazzi, Simone ;
Brivio, Jacopo ;
Kis, Andras .
ACS NANO, 2011, 5 (12) :9703-9709
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Band structure of MoS2, MoSe2, and α-MoTe2:: Angle-resolved photoelectron spectroscopy and ab initio calculations -: art. no. 235305 [J].
Böker, T ;
Severin, R ;
Müller, A ;
Janowitz, C ;
Manzke, R ;
Voss, D ;
Krüger, P ;
Mazur, A ;
Pollmann, J .
PHYSICAL REVIEW B, 2001, 64 (23)
[8]   BAND STRUCTURES OF SOME TRANSITION-METAL DICHALCOGENIDES .3. GROUP VI A - TRIGONAL PRISM MATERIALS [J].
BROMLEY, RA ;
YOFFE, AD ;
MURRAY, RB .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1972, 5 (07) :759-&
[9]   Elastic Properties of Freely Suspended MoS2 Nanosheets [J].
Castellanos-Gomez, Andres ;
Poot, Menno ;
Steele, Gary A. ;
van der Zant, Herre S. J. ;
Agrait, Nicolas ;
Rubio-Bollinger, Gabino .
ADVANCED MATERIALS, 2012, 24 (06) :772-775
[10]   Intrinsic defects in ZnO calculated by screened exchange and hybrid density functionals [J].
Clark, S. J. ;
Robertson, J. ;
Lany, S. ;
Zunger, A. .
PHYSICAL REVIEW B, 2010, 81 (11)