Dispersive optical solitons by the semi-inverse variational principle

被引:26
作者
Biswas, Anjan [1 ,2 ]
Johnson, Stephen [1 ,2 ]
Fessak, Megan [1 ,2 ]
Siercke, Beatrice [2 ]
Zerrad, Essaid [3 ]
Konar, Swapan [4 ]
机构
[1] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
[2] Delaware State Univ, Ctr Res & Educ Opt Sci & Applicat, Dover, DE 19901 USA
[3] Delaware State Univ, Dept Phys & Preengn, Dover, DE 19901 USA
[4] Birla Inst Technol, Dept Appl Phys, Ranchi 835215, Bihar, India
关键词
optical fibers; optical communications; solitons; PERTURBATION;
D O I
10.1080/09500340.2011.620185
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper an analytical expression for an optical soliton is obtained with the aid of He's semi-inverse variational principle in the presence of third- and fourth-order dispersion as well as inter-modal dispersion. Three laws of nonlinear media are considered in this paper: the Kerr law, the power law and the log law.
引用
收藏
页码:213 / 217
页数:5
相关论文
共 20 条
[1]   High-order soliton breakup and soliton self-frequency shifts in a microstructured optical fiber [J].
Banaee, M. G. ;
Young, Jeff F. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2006, 23 (07) :1484-1489
[2]   TEMPORAL 1-SOLITON SOLUTION OF THE COMPLEX GINZBURG-LANDAU EQUATION WITH POWER LAW NONLINEARITY [J].
Biswas, A. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2009, 96 :1-7
[3]  
Biswas A., 2010, Optics and Photonics Letters, V3, P1
[4]  
Biswas A., 2006, Introduction to Non-Kerr Law Optical solitons
[5]  
Biswas A, 2010, OPT APPL, V40, P801
[6]   Optical Solitons with Higher Order Dispersion in a Log Law Media [J].
Biswas, Anjan ;
Watson, James E., Jr. ;
Cleary, Carl ;
Milovic, Daniela .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2010, 31 (09) :1057-1062
[7]   OPTICAL SOLITONS WITH HIGHER ORDER DISPERSION BY SEMI-INVERSE VARIATIONAL PRINCIPLE [J].
Green, P. D. ;
Milovic, D. ;
Lott, D. A. ;
Biswas, A. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2010, 102 :337-350
[8]   Variational principles for some nonlinear partial differential equations with variable coefficients [J].
He, JH .
CHAOS SOLITONS & FRACTALS, 2004, 19 (04) :847-851
[9]   Optical soliton perturbation in a non-Kerr law media [J].
Kohl, Russell ;
Biswas, Anjan ;
Milovic, Daniela ;
Zerrad, Essaid .
OPTICS AND LASER TECHNOLOGY, 2008, 40 (04) :647-662
[10]   Optical Solitons by He's Variational Principle in a Non-Kerr Law Media [J].
Kohl, Russell ;
Milovic, Daniela ;
Zerrad, Essaid ;
Biswas, Anjan .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2009, 30 (05) :526-537