Pressure effect on the spin-dependent electronic structure of Au intercalated h-BN/graphene/h-BN

被引:0
作者
Xia, Youzhi [1 ]
Li, Zhongyao [1 ,2 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Shanghai Key Lab Modern Opt Syst, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene; hexagonal boron nitride; electronic structure; density-functional theory; pressure effect; spin-orbit effect; SURFACE-STATE BAND; AB-INITIO; BILAYER GRAPHENE; CARBON NANOTUBES; ROOM-TEMPERATURE; GAS; TRANSPORT; FIELD;
D O I
10.1088/0953-8984/28/50/505004
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The spin-dependent electronic structures of Au intercalated hexagonal-BN/graphene/ hexagonal-BN under pressure or electric field are examined on the basis of density-functional theory. Two kinds of doping concentrations are considered: one-monolayer Au doping and 1/4-monolayer Au doping. In one-monolayer Au doped structure, the large band gap of graphene is mainly induced by the B-C interaction, while the large spin-orbit effect is from the C-Au interaction. Both the band gap and the spin-orbit splitting can be modulated by pressure. In the 1/4-monolayer Au doped structure, the conduction band around the Gamma point is in the band gap of graphene with a Rashba constant of 0.12 eV angstrom/(h) over bar. The Rashba effect can also be modulated by pressure and electric field. Our study provides a possible method to manipulate the spin-dependent electronic structure of graphene by proximity effect and extract the large spin-orbit effect of Au atoms.
引用
收藏
页数:6
相关论文
共 60 条
[1]   Giant spin splitting through surface alloying [J].
Ast, Christian R. ;
Henk, Juergen ;
Ernst, Arthur ;
Moreschini, Luca ;
Falub, Mihaela C. ;
Pacile, Daniela ;
Bruno, Patrick ;
Kern, Klaus ;
Grioni, Marco .
PHYSICAL REVIEW LETTERS, 2007, 98 (18)
[2]   Spin-orbit proximity effect in graphene [J].
Avsar, A. ;
Tan, J. Y. ;
Taychatanapat, T. ;
Balakrishnan, J. ;
Koon, G. K. W. ;
Yeo, Y. ;
Lahiri, J. ;
Carvalho, A. ;
Rodin, A. S. ;
O'Farrell, E. C. T. ;
Eda, G. ;
Castro Neto, A. H. ;
Oezyilmaz, B. .
NATURE COMMUNICATIONS, 2014, 5
[3]  
Balog R, 2010, NAT MATER, V9, P315, DOI [10.1038/nmat2710, 10.1038/NMAT2710]
[4]   First-principles calculation of the spin-orbit splitting in graphene [J].
Boettger, J. C. ;
Trickey, S. B. .
PHYSICAL REVIEW B, 2007, 75 (12)
[5]  
BYCHKOV YA, 1984, JETP LETT+, V39, P78
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Semiconducting Electronic Property of Graphene Adsorbed on (0001) Surfaces of SiO2 [J].
Cuong, Nguyen Thanh ;
Otani, Minoru ;
Okada, Susumu .
PHYSICAL REVIEW LETTERS, 2011, 106 (10)
[8]   ELECTRONIC ANALOG OF THE ELECTROOPTIC MODULATOR [J].
DATTA, S ;
DAS, B .
APPLIED PHYSICS LETTERS, 1990, 56 (07) :665-667
[9]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613
[10]  
Feng J, 2012, NAT PHOTONICS, V6, P865, DOI [10.1038/NPHOTON.2012.285, 10.1038/nphoton.2012.285]