Analyses of Adsorption Behavior of CO2, CH4, and N2 on Different Types of BETA Zeolites

被引:36
作者
Henrique, Adriano [1 ,2 ,3 ]
Karimi, Mohsen [1 ,2 ,3 ]
Silva, Jose A. C. [2 ,3 ]
Rodrigues, Alirio E. [1 ]
机构
[1] Univ Porto, Dept Chem Engn, Fac Engn, LSRE,Associate Lab LSRE LCM, Rua Dr Roberto Frias, P-4099002 Porto, Portugal
[2] Inst Politecn Braganca, Dept Chem & Biol Technol, LSRE, Associate Lab LSRE LCM, Campus Santa Apolonia, P-5300857 Braganca, Portugal
[3] Ctr Invest Montanha CIMO, Grp Proc & Prod Sustentaveis, Campus Santa Apolonia, P-5300857 Braganca, Portugal
关键词
Adsorption equilibrium; Natural gas upgrading; Response surface methodology; Zeolite BETA; Zero-length-column technique; PRESSURE-SWING ADSORPTION; METAL-ORGANIC FRAMEWORK; CARBON-DIOXIDE; BINARY ADSORPTION; BINDERLESS BEADS; MOLECULAR-SIEVES; SEPARATION; CAPTURE; METHANE; NITROGEN;
D O I
10.1002/ceat.201800386
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The adsorption equilibrium and kinetics of CO2, CH4, and N-2 on three types of BETA zeolites were investigated at different temperatures and a defined partial pressure range from dynamic breakthrough experiments. The adsorbed amount followed the decreasing order of CO2 > CH4 > N-2 for all studied materials. For the same ratio of SiO2/Al2O3, the Na-BETA-25 zeolite showed a higher uptake capacity than H-BETA-25, due to the presence of a Na+ cationic center. Comparing the same H+ compensation cation, zeolite H-BETA-25 expressed a slightly higher adsorption capacity than H-BETA-150. Regarding the selectivity of gases, based on their affinity constants, H-BETA-150 displayed the best ability. The adsorption kinetics was considered using the zero-length-column (ZLC) technique. Response surface methodology (RSM) was applied to evaluate the interactions between adsorption parameters and to describe the process.
引用
收藏
页码:327 / 342
页数:16
相关论文
共 77 条
[1]   Single and Multicomponent Sorption of CO2, CH4 and N2 in a Microporous Metal-Organic Framework [J].
Barcia, Patrick S. ;
Bastin, Laurent ;
Hurtado, Eric J. ;
Silva, Jose A. C. ;
Rodrigues, Alirio E. ;
Chen, Banglin .
SEPARATION SCIENCE AND TECHNOLOGY, 2008, 43 (13) :3494-3521
[2]   Modeling and optimization I: Usability of response surface methodology [J].
Bas, Deniz ;
Boyaci, Ismail H. .
JOURNAL OF FOOD ENGINEERING, 2007, 78 (03) :836-845
[3]   A microporous metal-organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption [J].
Bastin, Laurent ;
Barcia, Patrick S. ;
Hurtado, Eric J. ;
Silva, Jose A. C. ;
Rodrigues, Alirio E. ;
Chen, Banglin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (05) :1575-1581
[4]  
BECNEL JM, 2002, AM SOC ENG ED ANN C
[5]   Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations - A review [J].
Ben-Mansour, R. ;
Habib, M. A. ;
Bamidele, O. E. ;
Basha, M. ;
Qasem, N. A. A. ;
Peedikakkal, A. ;
Laoui, T. ;
Ali, M. .
APPLIED ENERGY, 2016, 161 :225-255
[6]   Adsorption of gases in multimolecular layers [J].
Brunauer, S ;
Emmett, PH ;
Teller, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1938, 60 :309-319
[7]   Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures [J].
Cavenati, S ;
Grande, CA ;
Rodrigues, AE .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2004, 49 (04) :1095-1101
[8]  
Cejka J., 2007, INTRO ZEOLITE MOL SI
[9]   Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources [J].
Choi, Sunho ;
Drese, Jeffrey H. ;
Jones, Christopher W. .
CHEMSUSCHEM, 2009, 2 (09) :796-854
[10]   CO2 desorption via microwave heating for post-combustion carbon capture [J].
Chronopoulos, Theo ;
Fernandez-Diez, Yolanda ;
Maroto-Valer, M. Mercedes ;
Ocone, Raffaella ;
Reay, David A. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2014, 197 :288-290