A magnetic particle micro-trap for large trapping surfaces

被引:5
|
作者
Gooneratne, Chinthaka P. [1 ]
Liang, Cai [1 ]
Giouroudi, Ioanna [2 ]
Kosel, Juergen [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Thuwal 23955, Saudi Arabia
[2] Vienna Univ Technol, Inst Sensor & Actuator Syst, A-1040 Vienna, Austria
来源
EUROSENSORS XXV | 2011年 / 25卷
关键词
magnetic particle; micro-trap; magnetic force; cytometry;
D O I
10.1016/j.proeng.2011.12.296
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Manipulation of micron-size magnetic particles of the superparamagnetic type contributes significantly in many applications like controlling the antibody/antigen binding process in immunoassays. Specifically, more target biomolecules can be attached/tagged and analyzed since the three dimensional structure of the magnetic particles increases the surface to volume ratio. Additionally, such biomolecular-tagged magnetic particles can be easily manipulated by an external magnetic field due to their superparamagnetic behavior. Therefore, magnetic particle-based immunoassays are extensively applied in micro-flow cytometry. The design of a square-loop micro-trap as a magnetic particle manipulator as well as numerical and experimental analysis is presented. Experimental results showed that the micro-trap could successfully trap and concentrate magnetic particles from a large to a small area with a high spatial range. (C) 2011 Published by Elsevier Ltd.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Characterization of trap geometry in flow through dielectrophoretic-microfluidic device for particle trapping
    Rahman, Mohammad Rizwen Ur
    Kwak, Tae Joon
    Woehl, Jorg C.
    Chang, Woo-Jin
    2020 IEEE 15TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEM (IEEE NEMS 2020), 2020, : 206 - 210
  • [42] Trapping of agglomerated nanoparticles by the acoustic field: influence of particle diameter and density on the trap efficiency
    Satya P R KANDADA
    C Balasubramanian
    Pramana, 97
  • [43] Magnetic particle mixing with magnetic micro-convection for microfluidics
    Kitenbergs, Guntars
    Erglis, Kaspars
    Perzynski, Regine
    Cebers, Andrejs
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 380 : 227 - 230
  • [44] A large octupole magnetic trap for research with atomic hydrogen
    Ahokas, J.
    Semakin, A.
    Jarvinen, J.
    Hanski, O.
    Laptiyenko, A.
    Dvornichenko, V.
    Salonen, K.
    Burkley, Z.
    Crivelli, P.
    Golovizin, A.
    Nesvizhevsky, V.
    Nez, F.
    Yzombard, P.
    Widmann, E.
    Vasiliev, S.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (02):
  • [45] Simultaneous trapping of magnetic and diamagnetic particle plugs for separations and bioassays
    Tarn, Mark D.
    Peyman, Sally A.
    Pamme, Nicole
    RSC ADVANCES, 2013, 3 (20): : 7209 - 7214
  • [47] Manipulations of vibrating micro magnetic particle chains
    Li, Yan-Hom
    Sheu, Shih-Tsung
    Pai, Jay-Min
    Chen, Ching-Yao
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)
  • [48] A levitated magnetic dipole configuration as a compact charged particle trap
    Saitoh, H.
    Stoneking, M. R.
    Pedersen, T. Sunn
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (04):
  • [49] Particle energisation in a collapsing magnetic trap model: the relativistic regime
    Eradat Oskoui, S.
    Neukirch, T.
    ASTRONOMY & ASTROPHYSICS, 2014, 567
  • [50] CURVILINEAR MAGNETIC-WELL ELEMENTS FOR THE DRAKON TRAP WITH CIRCULAR MAGNETIC-SURFACES
    GLAGOLEV, VM
    TRUBNIKOV, BA
    CHURIN, YN
    NUCLEAR FUSION, 1985, 25 (08) : 881 - 890