Kummer's quartics and numerically reflective involutions of Enriques surfaces

被引:6
作者
Mukai, Shigeru [1 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
关键词
Enriques surface; Kummer surface; period; AUTOMORPHISMS;
D O I
10.2969/jmsj/06410231
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A (holomorphic) involution sigma of an Enriques surface S is said to be numerically reflective if it acts on the cohomology group H-2(S, Q) as a reflection. We show that the invariant sublattice H(S, sigma; Z) of the anti-Enriques lattice H- (S, Z) under the action of sigma is isomorphic to either (-4) perpendicular to U(2) perpendicular to U(2) or <-4 > perpendicular to U(2) perpendicular to U. Moreover, when H(S, sigma; Z) is isomorphic to <-4 > perpendicular to U(2) perpendicular to U(2), we describe (S, sigma) geometrically in terms of a curve of genus two and a Gopel subgroup of its Jacobian.
引用
收藏
页码:231 / 246
页数:16
相关论文
共 16 条
[1]  
[Anonymous], 1978, J. Fac. Sci., Univ. Tokyo
[2]  
[Anonymous], B AM MATH SOC
[3]  
Barth W., 1984, Ergeb. Math. Grenzgeb., V4
[4]  
Birkenhake C., 2004, COMPLEX ABELIAN VARI
[5]   Birational automorphisms of quartic Hessian surfaces [J].
Dolgachev, I ;
Keum, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (08) :3031-3057
[6]  
Hirzebruch, 1977, LECT NOTES MATH, V627, P287
[7]  
Hutchinson J., 1901, B AM MATH SOC, V7, P211, DOI DOI 10.1090/S0002-9904-1901-00785-9
[8]  
Hutchinson J. I., 1900, B AM MATH SOC, V6, P328, DOI DOI 10.1090/S0002-9904-1900-00716-6
[9]   EVERY ALGEBRAIC KUMMER SURFACE IS THE K3-COVER OF AN ENRIQUES SURFACE [J].
KEUM, JH .
NAGOYA MATHEMATICAL JOURNAL, 1990, 118 :99-110
[10]   ON K3 SURFACES WITH LARGE PICARD NUMBER [J].
MORRISON, DR .
INVENTIONES MATHEMATICAE, 1984, 75 (01) :105-121