An Improved Upper Bound on the Independent Domination Number in Cubic Graphs of Girth at Least Six

被引:3
作者
Abrishami, Gholamreza [1 ]
Henning, Michael A. [2 ]
机构
[1] Ferdowsi Univ Mashhad, Fac Math Sci, Dept Appl Math, POB 1159, Mashhad 91775, Razavi Khorasan, Iran
[2] Univ Johannesburg, Dept Math & Appl Math, ZA-2006 Auckland Pk, South Africa
关键词
Independent domination; Cubic graphs;
D O I
10.1007/s00373-021-02446-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Henning et al. (Discrete Appl Math 162:399-403, 2014) proved that if G is a bipartite, cubic graph of order n and of girth at least 6, then i(G) <= 4/11n. In this paper, we improve the 4/11-bound to a 5/14-bound, and prove that if G is a bipartite, cubic graph of order n and of girth at least 6, then i(G) <= 5/14 n.
引用
收藏
页数:12
相关论文
共 19 条
[1]   ON INDEPENDENT DOMINATION IN PLANAR CUBIC GRAPHS [J].
Abrishami, Gholamreza ;
Henning, Michael A. ;
Rahbarnia, Freydoon .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (04) :841-853
[2]   Independent domination in subcubic graphs of girth at least six [J].
Abrishami, Gholamreza ;
Henning, Michael A. .
DISCRETE MATHEMATICS, 2018, 341 (01) :155-164
[3]   WHAT IS THE DIFFERENCE BETWEEN THE DOMINATION AND INDEPENDENT DOMINATION NUMBERS OF A CUBIC GRAPH [J].
BAREFOOT, C ;
HARARY, F ;
JONES, KF .
GRAPHS AND COMBINATORICS, 1991, 7 (02) :205-208
[4]   Independent Domination in Cubic Graphs [J].
Dorbec, Paul ;
Henning, Michael A. ;
Montassier, Mickael ;
Southey, Justin .
JOURNAL OF GRAPH THEORY, 2015, 80 (04) :329-349
[5]   Independent domination in graphs: A survey and recent results [J].
Goddard, Wayne ;
Henning, Michael A. .
DISCRETE MATHEMATICS, 2013, 313 (07) :839-854
[6]   On the Independent Domination Number of Regular Graphs [J].
Goddard, Wayne ;
Henning, Michael A. ;
Lyle, Jeremy ;
Southey, Justin .
ANNALS OF COMBINATORICS, 2012, 16 (04) :719-732
[7]   Independent dominating sets in triangle-free graphs [J].
Goddard, Wayne ;
Lyle, Jeremy .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 23 (01) :9-20
[8]  
Haynes T. W, 2020, Series: Developments in Mathematics, V64, DOI DOI 10.1007/978-3-030-51117-3
[9]  
Haynes T. W., 2021, STRUCTURES DOMINATIO, V66, DOI [10.1007/978-3-030-58892-2, DOI 10.1007/978-3-030-58892-2]
[10]  
Haynes T.W., 2022, Domination in Graphs: Core Concepts