Global Sliding Mode Observers for Some Uncertain Mechanical Systems

被引:17
作者
Apaza-Perez, W. Alejandro [1 ]
Moreno, Jaime A. [2 ]
Fridman, Leonid [3 ]
机构
[1] Univ Bordeaux, Lab Integrat Mat Syst IMS, Control Grp, Talence, France
[2] Univ Nacl Autonoma Mexico, Inst Ingn, Mexico City 04510, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Engn Fac, Dept Control, Div Elect Engn, Mexico City 04510, DF, Mexico
关键词
Observers; Mechanical systems; Friction; Uncertainty; Convergence; Perturbation methods; Position measurement; Dissipative observers; nonlinear observers; sliding-mode observers; velocity observers; STATE ESTIMATION; DIFFERENTIATION; DESIGN;
D O I
10.1109/TAC.2019.2931462
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a global sliding mode observer for a class of nonlinear mechanical systems with two degrees of freedom. For the observer design, besides the usual Coriolis and centrifugal forces, we consider (discontinuous) dry and viscous friction and non vanishing uncertainties/perturbations. Moreover, the system is not required to be bounded-input-bounded-state, rendering the observer design problem challenging. For this class of systems, a dissipativity-based sliding-mode observer, with theoretically exact global finite-time convergence to the actual velocities, is proposed. To illustrate the effectiveness of the proposed observer, experimental results on a cart-pendulum system are presented.
引用
收藏
页码:1348 / 1355
页数:8
相关论文
共 30 条
[1]   Dissipative approach to sliding mode observers design for uncertain mechanical systems [J].
Alejandro Apaza-Perez, W. ;
Moreno, Jaime A. ;
Fridman, Leonid M. .
AUTOMATICA, 2018, 87 :330-336
[2]  
[Anonymous], [No title captured]
[3]  
[Anonymous], 8 IFAC S FAULT DET S
[4]  
[Anonymous], 2017, 2017 IEEE 56 ANN C D, DOI DOI 10.1109/CDC.2017.8264573
[5]   A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints [J].
Astolfi, A. ;
Ortega, R. ;
Venkatraman, A. .
AUTOMATICA, 2010, 46 (01) :182-189
[6]  
Barbot J., 2010, Dyn. Contin. Discret. Impuls. Syst, V17, P1019
[7]   Global output feedback tracking control for a class of Lagrangian systems [J].
Besançon, G .
AUTOMATICA, 2000, 36 (12) :1915-1921
[8]   Uniform Robust Exact Differentiator [J].
Cruz-Zavala, Emmanuel ;
Moreno, Jaime A. ;
Fridman, Leonid M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (11) :2727-2733
[9]  
Cruz-Zavala Emmanuel., 2010, 2010 11th International Workshop on Variable Structure Systems (VSS), P14, DOI [10.1109/VSS.2010.5544656, DOI 10.1109/VSS.2010.5544656]
[10]   Second-order sliding-mode observer for mechanical systems [J].
Davila, J ;
Fridman, L ;
Levant, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) :1785-1789