An eigenfunction expansion for a quadratic pencil of a Schrodinger operator with spectral singularities

被引:57
作者
Bairamov, E [1 ]
Çakar, Ö
Krall, A
机构
[1] Ankara Univ, Dept Math, Ankara 06100, Turkey
[2] Penn State Univ, University Pk, PA 16802 USA
关键词
D O I
10.1006/jdeq.1998.3518
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the operator L generated in L-2(R+) by the differential expression t(y) = -y(n) + [q(x) + 2 lambda p(x) - lambda(2)] y. x is an element of R+ = [0, infinity), and the boundary condition y(0) = 0, where p and q are complex-valued functions and p is continuously differentiable on R+. We derive a two-fold spectral expansion of L tin the sense of Keldysh, 1951. Soviet Math Dokl. 77, 11-14 [1971, Russian Math Survey 26, 15-44 (Engl. transl.)]) in terms of the principal functions under the conditions [GRAPHICS] taking into account the spectral singularities. Also we investigate the convergence of the spectral expansion. (C) 1999 Academic Press.
引用
收藏
页码:268 / 289
页数:22
相关论文
共 32 条
[1]   ON INVERSE PROBLEM FOR KLEIN-GORDON S-WAVE EQUATION [J].
DEGASPERIS, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (02) :551-+
[2]  
GASYMOV MG, 1968, SOV MATH DOKL, V9, P390
[3]  
GASYMOV MG, 1965, SOV MATH DOKL, V6, P1426
[4]  
GASYMOV MG, 1972, FUNCT ANAL APPL, V6, P185
[5]  
Greiner W., 1994, QUANTUM CHROMODYNAMI
[6]  
Hruscev S.V., 1984, INDIANA U MATH J, V33, P313
[7]  
JAULENT M, 1976, ANN I H POINCARE A, V25, P119
[8]   INVERSE S-WAVE SCATTERING PROBLEM FOR A CLASS OF POTENTIALS DEPENDING ON ENERGY [J].
JAULENT, M ;
JEAN, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1972, 28 (03) :177-&
[9]  
Keldysh M.V., 1971, USP MAT NAUK, V26, P15
[10]  
KELDYSH MV, 1951, SOV MATH DOKL, V77, P1