Conservative and Dissipative Local Discontinuous Galerkin Methods for Korteweg-de Vries Type Equations

被引:17
作者
Zhang, Qian [1 ]
Xia, Yinhua [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
基金
美国国家科学基金会;
关键词
Local discontinuous Galerkin method; conservative and dissipative schemes; Korteweg-de Vries type equations; semi-implicit spectral deferred correction method; PARTIAL-DIFFERENTIAL-EQUATIONS; FINITE-ELEMENT-METHOD; DIFFUSION; CONVECTION;
D O I
10.4208/cicp.OA-2017-0204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we develop the Hamiltonian conservative and L-2 conservative local discontinuous Galerkin (LDG) schemes for the Korteweg-de Vries (KdV) type equations with the minimal stencil. For the time discretization, we adopt the semi-implicit spectral deferred correction (SDC) method to achieve the high order accuracy and efficiency. Also we compare the schemes with the dissipative LDG scheme. Stability of the fully discrete schemes is provided by Fourier analysis for the linearized KdV equation. Numerical examples are shown to illustrate the capability of these schemes. Compared with the dissipative LDG scheme, the numerical simulations also indicate that the conservative LDG scheme with high order time discretization can reduce the long time phase error validly.
引用
收藏
页码:532 / 563
页数:32
相关论文
共 34 条
[1]  
[Anonymous], 1984, Stability of Runge-Kutta methods for stiff nonlinear differential equations, CWI Monographs
[2]  
[Anonymous], 1964, APPL MATH SERIES
[3]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[4]   A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations [J].
Bassi, F ;
Rebay, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 131 (02) :267-279
[5]   CONSERVATIVE, DISCONTINUOUS GALERKIN-METHODS FOR THE GENERALIZED KORTEWEG-DE VRIES EQUATION [J].
Bona, J. L. ;
Chen, H. ;
Karakashian, O. ;
Xing, Y. .
MATHEMATICS OF COMPUTATION, 2013, 82 (283) :1401-1432
[6]  
Cheng Y, 2008, MATH COMPUT, V77, P699, DOI 10.1090/S0025-5718-07-02045-5
[7]   The local discontinuous Galerkin method for time-dependent convection-diffusion systems [J].
Cockburn, B ;
Shu, CW .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2440-2463
[8]   Numerical method satisfying the first two conservation laws for the Korteweg-de Vries equation [J].
Cui, Yanfen ;
Mao, De-Kang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (01) :376-399
[9]   Spectral deferred correction methods for ordinary differential equations [J].
Dutt, A ;
Greengard, L ;
Rokhlin, V .
BIT, 2000, 40 (02) :241-266
[10]   NUMERICAL AND THEORETICAL-STUDY OF CERTAIN NON-LINEAR WAVE PHENOMENA [J].
FORNBERG, B ;
WHITHAM, GB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1361) :373-404