Elliptic-cylindrical wavelets: The mathieu wavelets

被引:5
|
作者
Lira, MMS
de Oliveira, HM
Cintra, RJD
机构
[1] Univ Fed Pernambuco, Power Syst Digital Lab, LDSP, BR-50670901 Recife, PE, Brazil
[2] Univ Fed Pernambuco, Commun Res Grp, CODEC, BR-50670901 Recife, PE, Brazil
关键词
Floquet's theorem; Mathieu equation; waveguides; wavelets;
D O I
10.1109/LSP.2003.819341
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This note introduces a new family of wavelets and a multiresolution analysis that exploits the relationship between analyzing filters and Floquet's solution of Mathieu differential equations. The transfer function of both the detail and the smoothing filter is related to the solution of a Mathieu equation of the odd characteristic exponent. The number of notches of these filters can be easily designed. Wavelets derived by this method have potential application in the fields of optics and electromagnetism.
引用
收藏
页码:52 / 55
页数:4
相关论文
共 50 条
  • [21] Wavelets on planar tesselations
    Bertram, M
    Duchaineau, MA
    Hamann, B
    Joy, KI
    CISST'2000: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS, AND TECHNOLOGY, VOLS I AND II, 2000, : 619 - 625
  • [22] Deconvolution with wavelets and vaguelettes
    Gilbert, A
    Keller, W
    JOURNAL OF GEODESY, 2000, 74 (3-4) : 306 - 320
  • [23] A note on spline wavelets
    Liu, YM
    CHINESE SCIENCE BULLETIN, 1997, 42 (15): : 1250 - 1253
  • [24] Wavelets in Banach spaces
    Kisil, VV
    ACTA APPLICANDAE MATHEMATICAE, 1999, 59 (01) : 79 - 109
  • [25] A guide to wavelets for economists
    Crowley, Patrick M.
    JOURNAL OF ECONOMIC SURVEYS, 2007, 21 (02) : 207 - 267
  • [26] Biharmonic wavelets and their applications
    Dubosarskii, G. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (03): : 76 - 89
  • [27] Wavelets and adaptive thresholding
    Obidin, M. V.
    Serebrovski, A. P.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2014, 59 (12) : 1434 - 1439
  • [28] Wavelets in the Faraday experience
    Lizarralde, Carlos
    NEW ASPECTS OF SIGNAL PROCESSING AND WAVELETS, 2008, : 34 - 36
  • [29] Wavelets in Banach Spaces
    Vladimir V. Kisil
    Acta Applicandae Mathematica, 1999, 59 : 79 - 109
  • [30] Nonlinear equations and wavelets
    Ludu, A
    O'Connell, RF
    Draayer, JP
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (1-2) : 91 - 99