SbPS4: A novel anode for high-performance sodium-ion batteries

被引:79
|
作者
Yang, Miao [1 ,2 ]
Sun, Zhonghui [3 ]
Nie, Ping [4 ]
Yu, Haiyue [2 ]
Zhao, Chende [2 ]
Yu, Mengxuan [2 ]
Luo, Zhongzhen [5 ]
Geng, Hongbo [1 ]
Wu, Xinglong [2 ,6 ]
机构
[1] Changshu Inst Technol, Sch Mat Engn, Changshu 215500, Peoples R China
[2] Northeast Normal Univ, Fac Chem, Changchun 130024, Peoples R China
[3] Guangzhou Univ, Ctr Adv Analyt Sci, Sch Chem & Chem Engn, Guangzhou 510006, Peoples R China
[4] Jilin Normal Univ, Minist Educ, Key Lab Preparat & Applicat Environm Friendly Mat, Changchun 130103, Peoples R China
[5] Fuzhou Univ, Coll Mat Sci & Engn, Key Lab Ecomat Adv Technol, Fuzhou 350108, Peoples R China
[6] Northeast Normal Univ, Key Lab UV Light Emitting Mat & Technol, Minist Educ, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; High-capacity anode; Thiophosphate; SbPS4/GO; Full cell; NANOSHEETS; SB2S3;
D O I
10.1016/j.cclet.2021.06.065
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the in-depth research of sodium-ion batteries (SIBs), the development of novel sodium-ion anode material has become a top priority. In this work, tube cluster-shaped SbPS4 was synthesized by a high-temperature solid phase reaction. Then the typical short tubular ternary thiophosphate SbPS4 compounded with graphene oxide (SbPS4/GO) was successfully synthesized after ultrasonication and freeze-drying. SbPS 4 shows a high theoretical specific capacity (1335 mAh/g) according to the conversion-alloying dual mechanisms. The unique short tube inserted in the spongy graphene structure of SbPS4/GO results in boosting the Na ions transport and alleviating the huge volume change in the charging and discharging processes, improving the sodium storage performance. Consequently, the tubular SbPS4 compounded with 10% GO provides an outstanding capacity of 359.58 mAh/g at 500 mA/g. The result indicates that SbPS4/GO anode has a promising application potential for SIBs. (C) 2021 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
引用
收藏
页码:470 / 474
页数:5
相关论文
共 50 条
  • [21] Tetrathiafulvalene Carboxylate-Based Anode Material for High-Performance Sodium-Ion Batteries
    Luo, Yuansheng
    Jia, Kangkang
    Li, Xiaoxue
    Zhang, Jingwei
    Huang, Guimei
    Zhong, Cheng
    Zhu, Linna
    Wu, Fei
    CHEMSUSCHEM, 2024, 17 (20)
  • [22] FeP nanorod arrays on carbon cloth: a high-performance anode for sodium-ion batteries
    Wang, Yuan
    Wu, Chunjin
    Wu, Zhenguo
    Cui, Guanwei
    Xie, Fengyu
    Guo, Xiaodong
    Sun, Xuping
    CHEMICAL COMMUNICATIONS, 2018, 54 (67) : 9341 - 9344
  • [23] Novel nitrogen-doped ordered mesoporous carbon as high-performance anode material for sodium-ion batteries
    Qu, Yaohui
    Guo, Manman
    Wang, Xiwen
    Yuan, Cailei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 791 : 874 - 882
  • [24] Cellulose as a novel precursor to construct high-performance hard carbon anode toward enhanced sodium-ion batteries
    Qin, Linna
    Xu, Shoudong
    Lu, Zhonghua
    Wang, Li
    Chen, Liang
    Zhang, Ding
    Tian, Jinlv
    Wei, Tao
    Chen, Jiaqi
    Guo, Chunli
    DIAMOND AND RELATED MATERIALS, 2023, 136
  • [25] Electrode Materials for High-Performance Sodium-Ion Batteries
    Mukherjee, Santanu
    Bin Mujib, Shakir
    Soares, Davi
    Singh, Gurpreet
    MATERIALS, 2019, 12 (12)
  • [26] Sodium titanate nanorods decorated with silver nanoparticles as a high-performance anode material for sodium-ion batteries
    Yin, Xinxin
    Zhu, Limin
    Zhang, Yuwei
    Yang, Xiping
    Xie, Lingling
    Han, Qing
    Ullah, Irfan
    Hou, Wentao
    Wu, Xianyong
    Cao, Xiaoyu
    ELECTROCHIMICA ACTA, 2023, 469
  • [27] KTiOPO4 as a novel anode material for sodium-ion batteries
    Liu, Shuang
    Shao, Lianyi
    Zhang, Xuejing
    Zhou, Meng
    Tao, Zhanliang
    Chen, Jun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 754 : 147 - 152
  • [28] Advanced MoS2 and graphene heterostructures as high-performance anode for sodium-ion batteries
    Li, Jianhui
    Wang, Hongkang
    Wei, Wei
    Meng, Lingjie
    NANOTECHNOLOGY, 2019, 30 (10)
  • [29] Facile synthesis of NiCoSe2@carbon anode for high-performance sodium-ion batteries
    Zhang, Liuyang
    Xie, Ping
    Zhang, Xilong
    Zhu, Bicheng
    Liu, Tao
    Yu, Jiaguo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 662 : 1075 - 1085
  • [30] High-performance tin dioxide/graphdiyne composite anode materials for lithium/sodium-ion batteries
    Wang, Zhe
    Zhao, Zhenzhen
    Li, Tiantian
    Yuan, Yiming
    Shen, Xiangyan
    Zhou, Jin
    JOURNAL OF POWER SOURCES, 2025, 638