SbPS4: A novel anode for high-performance sodium-ion batteries

被引:79
|
作者
Yang, Miao [1 ,2 ]
Sun, Zhonghui [3 ]
Nie, Ping [4 ]
Yu, Haiyue [2 ]
Zhao, Chende [2 ]
Yu, Mengxuan [2 ]
Luo, Zhongzhen [5 ]
Geng, Hongbo [1 ]
Wu, Xinglong [2 ,6 ]
机构
[1] Changshu Inst Technol, Sch Mat Engn, Changshu 215500, Peoples R China
[2] Northeast Normal Univ, Fac Chem, Changchun 130024, Peoples R China
[3] Guangzhou Univ, Ctr Adv Analyt Sci, Sch Chem & Chem Engn, Guangzhou 510006, Peoples R China
[4] Jilin Normal Univ, Minist Educ, Key Lab Preparat & Applicat Environm Friendly Mat, Changchun 130103, Peoples R China
[5] Fuzhou Univ, Coll Mat Sci & Engn, Key Lab Ecomat Adv Technol, Fuzhou 350108, Peoples R China
[6] Northeast Normal Univ, Key Lab UV Light Emitting Mat & Technol, Minist Educ, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; High-capacity anode; Thiophosphate; SbPS4/GO; Full cell; NANOSHEETS; SB2S3;
D O I
10.1016/j.cclet.2021.06.065
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the in-depth research of sodium-ion batteries (SIBs), the development of novel sodium-ion anode material has become a top priority. In this work, tube cluster-shaped SbPS4 was synthesized by a high-temperature solid phase reaction. Then the typical short tubular ternary thiophosphate SbPS4 compounded with graphene oxide (SbPS4/GO) was successfully synthesized after ultrasonication and freeze-drying. SbPS 4 shows a high theoretical specific capacity (1335 mAh/g) according to the conversion-alloying dual mechanisms. The unique short tube inserted in the spongy graphene structure of SbPS4/GO results in boosting the Na ions transport and alleviating the huge volume change in the charging and discharging processes, improving the sodium storage performance. Consequently, the tubular SbPS4 compounded with 10% GO provides an outstanding capacity of 359.58 mAh/g at 500 mA/g. The result indicates that SbPS4/GO anode has a promising application potential for SIBs. (C) 2021 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
引用
收藏
页码:470 / 474
页数:5
相关论文
共 50 条
  • [1] Tubular SbPS4−xSex (0 ≤ x ≤ 3) Clusters as High-Performance Anode Materials for Sodium-Ion Batteries
    Meng-Xuan Yu
    Miao Yang
    Jin-Zhi Guo
    Hao-Jie Liang
    Dan Xie
    Zhen-Yi Gu
    Weiping Guo
    Zhong-Zhen Luo
    Xing-Long Wu
    Journal of Electronic Materials, 2023, 52 : 829 - 835
  • [2] Tubular SbPS4-xSex (0=x=3) Clusters as High-Performance Anode Materials for Sodium-Ion Batteries
    Yu, Meng-Xuan
    Yang, Miao
    Guo, Jin-Zhi
    Liang, Hao-Jie
    Xie, Dan
    Gu, Zhen-Yi
    Guo, Weiping
    Luo, Zhong-Zhen
    Wu, Xing-Long
    JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (02) : 829 - 835
  • [3] WS2 Nanowires as a High-Performance Anode for Sodium-Ion Batteries
    Liu, Yongchang
    Zhang, Ning
    Kang, Hongyan
    Shang, Minghui
    Jiao, Lifang
    Chen, Jun
    CHEMISTRY-A EUROPEAN JOURNAL, 2015, 21 (33) : 11878 - 11884
  • [4] Germanium telluride: Layered high-performance anode for sodium-ion batteries
    Sung, Geon-Kyu
    Nam, Ki-Hun
    Choi, Jeong-Hee
    Park, Cheol-Min
    ELECTROCHIMICA ACTA, 2020, 331
  • [5] Nanowire of WP as a High-Performance Anode Material for Sodium-Ion Batteries
    Pan, Qi
    Chen, Hui
    Wu, Zhenguo
    Wang, Yuan
    Zhong, Benhe
    Xia, Li
    Wang, Hai-Ying
    Cui, Guanwei
    Guo, Xiaodong
    Sun, Xuping
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (04) : 971 - 975
  • [6] Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries
    Chen, Rusong
    Li, Shenzhou
    Liu, Jianyun
    Li, Yuyu
    Ma, Feng
    Liang, Jiashun
    Chen, Xian
    Miao, Zhengpei
    Han, Jiantao
    Wang, Tanyuan
    Li, Qing
    ELECTROCHIMICA ACTA, 2018, 282 : 973 - 980
  • [7] An Advanced MoS2/Carbon Anode for High-Performance Sodium-Ion Batteries
    Wang, Jingjing
    Luo, Chao
    Gao, Tao
    Langrock, Alex
    Mignerey, Alice C.
    Wang, Chunsheng
    SMALL, 2015, 11 (04) : 473 - 481
  • [8] Molten salt synthesis of carbon anode for high-performance sodium-ion batteries
    Song, Qiushi
    Zhao, Hengpeng
    Zhao, Jie
    Chen, Denghui
    Xu, Qian
    Xie, Hongwei
    Ning, Zhiqiang
    Yu, Kai
    ELECTROCHIMICA ACTA, 2023, 447
  • [9] Amorphous Germanium Nanomaterials as High-Performance Anode for Lithium and Sodium-Ion Batteries
    Liu, Chao
    Jiang, Yiming
    Meng, Chao
    Liu, Xiaocun
    Li, Bo
    Xia, Shengqing
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (11)
  • [10] FeBO3 as a low cost and high-performance anode material for sodium-ion batteries
    Wu, Baozhu
    Qi, Shuo
    Wu, Xikai
    Wang, Haoli
    Zhuang, Qiangqiang
    Yi, Huimin
    Xu, Pu
    Xiong, Zhennan
    Shi, Gejun
    Chen, Shuangqiang
    Wang, Baofeng
    CHINESE CHEMICAL LETTERS, 2021, 32 (10) : 3113 - 3117