Highly Porous Core-Shell Polymeric Fiber Network

被引:39
作者
Gulfam, Muhammad [1 ]
Lee, Jong Min [1 ]
Kim, Ji-eun [1 ]
Lim, Dong Woo [1 ]
Lee, Eun Kyu [2 ]
Chung, Bong Geun [1 ]
机构
[1] Hanyang Univ, Dept Bionano Engn, Ansan 426791, South Korea
[2] Kyungwon Univ, Coll Bionanotechnol, Songnam 461701, South Korea
关键词
NANOFIBROUS SCAFFOLDS; ELECTROSPINNING PROCESS; TISSUE REGENERATION; SURFACE-MORPHOLOGY; FIBROUS SCAFFOLDS; GELATIN; FABRICATION; COMPOSITE; MEMBRANES; DELIVERY;
D O I
10.1021/la201253z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Core-shell nanofibers are of great interest in the field of tissue engineering and cell biology. We fabricated porous core-shell fiber networks using an electrospinning system with a water-immersed collector. We hypothesized that the phase separation and solvent evaporation process would enable the control of the pore formation on the core-shell fiber networks. To synthesize porous core-shell fiber, networks, we used polycaprolactone (PCL) and gelatin. Quantitative analysis showed that the sizes of gelatin-PCL core-shell nanofibers increased with PCL concentrations. We also observed that the shapes of the pores created on the PCL fiber networks were elongated, whereas the gelatin-PCL core-shell fiber networks had circular pores. The surface areas of porous nanofibers were larger than those of the nonporous nanofibers due to the highly volatile solvent and phase separation process. The porous core-shell fiber network was also used as a matrix to culture various cell types, such as embryonic stem cells, breast cancer cells, and fibroblast cells. Therefore, this porous core-shell polymeric fiber network could be a potentially powerful tool for tissue engineering and biological applications.
引用
收藏
页码:10993 / 10999
页数:7
相关论文
共 35 条
[1]   Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions [J].
Beachley, Vince ;
Wen, Xuejun .
PROGRESS IN POLYMER SCIENCE, 2010, 35 (07) :868-892
[2]   Electrospinning: A fascinating fiber fabrication technique [J].
Bhardwaj, Nandana ;
Kundu, Subhas C. .
BIOTECHNOLOGY ADVANCES, 2010, 28 (03) :325-347
[3]   Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process [J].
Casper, CL ;
Stephens, JS ;
Tassi, NG ;
Chase, DB ;
Rabolt, JF .
MACROMOLECULES, 2004, 37 (02) :573-578
[4]   Controlled deposition of electrospun poly(ethylene oxide) fibers [J].
Deitzel, JM ;
Kleinmeyer, JD ;
Hirvonen, JK ;
Tan, NCB .
POLYMER, 2001, 42 (19) :8163-8170
[5]  
DOSHI J, 1995, J ELECTROSTAT, V35, P151, DOI 10.1016/0304-3886(95)00041-8
[6]   Metal oxide-coated polymer nanofibers [J].
Drew, C ;
Liu, X ;
Ziegler, D ;
Wang, XY ;
Bruno, FF ;
Whitten, J ;
Samuelson, LA ;
Kumar, J .
NANO LETTERS, 2003, 3 (02) :143-147
[7]   Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration [J].
Francis, Lijo ;
Venugopal, J. ;
Prabhakaran, Molamma P. ;
Thavasi, V. ;
Marsano, E. ;
Ramakrishna, S. .
ACTA BIOMATERIALIA, 2010, 6 (10) :4100-4109
[8]   Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering [J].
Ghasemi-Mobarakeh, Laleh ;
Prabhakaran, Molamma P. ;
Morshed, Mohammad ;
Nasr-Esfahani, Mohammad-Hossein ;
Ramakrishna, Seeram .
BIOMATERIALS, 2008, 29 (34) :4532-4539
[9]   Transport properties of porous membranes based on electrospun nanofibers [J].
Gibson, P ;
Schreuder-Gibson, H ;
Rivin, D .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2001, 187 :469-481
[10]   Electrospinning of gelatin and gelatin/poly(L-lactide) blend and its characteristics for wound dressing [J].
Gu, Shu-Ying ;
Wang, Zhi-Mei ;
Ren, Jie ;
Zhang, Chun-Yan .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2009, 29 (06) :1822-1828