Towards high durable lithium ion batteries with waterborne LiFePO4 electrodes

被引:21
作者
Kvasha, Andriy [1 ]
Urdampilleta, Idoia [1 ]
de Meatza, Iratxe [1 ]
Bengoechea, Miguel [1 ]
Alberto Blazquez, J. [1 ]
Yate, Luis [2 ]
Miguel, Oscar [1 ]
Grande, Hans-Juergen [1 ]
机构
[1] IK4 CIDETEC, Parque Tecnol San Sebastian,Paseo Miramon 196, Donostia San Sebastian 20014, Spain
[2] CIC biomaGUNE, Parque Tecnol San Sebastian,Paseo Miramon 182, Donostia San Sebastian 20014, Spain
关键词
Lithium-ion battery; carbon coated LiFePO4; slurry; aqueous processing; cycle life assessment; COMPOSITE ELECTRODES; CATHODE MATERIALS; PERFORMANCE; XPS; CELLS; POWER; IRON;
D O I
10.1016/j.electacta.2016.08.021
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The positive electrodes based on nano-and micrometric carbon coated LiFePO4 (LFP) powders are prepared via aqueous slurry processing using "normal" and "intensive" mixing procedures. The XRD, XPS, and electrochemical characterization reveal that the "intensive" mixing process improves the discharge C-rate capability of the n-LFP cathode however provokes formation of an undesirable thin surface layer enriched by Fe3+ species. The waterborne graphite anodes and LiFePO4 cathodes for the energy and power cells are being developed, upscaled and manufactured on a pilot plant. Energy LiFePO4/C pouch cells demonstrate outstanding durability maintaining 80% of initial discharge capacity (IDC) after 7450 and 2400 full cycles under 1D and 4D discharge currents, respectively. Moreover, further cycling of the energy cell working under 1C/4D protocol reveals its extra-long secondary life (70% of IDC on 9200th cycle). Power LiFePO4/C pouch cell shows long lasting cycle life retaining 80% of IDC after 3350 cycles under harsh cycling conditions (3C/8D). The reported results are being achieved despite confirmed water release from lithium iron phosphate cathodes to the electrolyte. Finally, viability of aqueous processing of the electrodes without sacrificing electrochemical performance of LiFePO4/C batteries is clearly proven. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:238 / 246
页数:9
相关论文
共 39 条
[21]  
Luo JY, 2010, NAT CHEM, V2, P760, DOI [10.1038/nchem.763, 10.1038/NCHEM.763]
[22]   More on the reactivity of olivine LiFePO4 nano-particles with atmosphere at moderate temperature [J].
Martin, Jean-Frederic ;
Cuisinier, Marine ;
Dupre, Nicolas ;
Yamada, Atsuo ;
Kanno, Ryoji ;
Guyomard, Dominique .
JOURNAL OF POWER SOURCES, 2011, 196 (04) :2155-2163
[23]  
Moulder G.F., 1995, HDB XRAY PHOTOELECTR
[24]   Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries [J].
Ni, Haifang ;
Liu, Jinkun ;
Fan, Li-Zhen .
NANOSCALE, 2013, 5 (05) :2164-2168
[25]   Why do batteries fail? [J].
Palacin, M. R. ;
de Guibert, A. .
SCIENCE, 2016, 351 (6273)
[26]  
Porcher W, 2008, ELECTROCHEM SOLID ST, V11, pA4, DOI 10.1149/1.2795833
[27]   Optimizing the surfactant for the aqueous processing of LiFePO4 composite electrodes [J].
Porcher, W. ;
Lestriez, B. ;
Jouanneau, S. ;
Guyomard, D. .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2835-2843
[28]   Design of Aqueous Processed Thick LiFePO4 Composite Electrodes for High-Energy Lithium Battery [J].
Porcher, W. ;
Lestriez, B. ;
Jouanneau, S. ;
Guyomard, D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (03) :A133-A144
[29]   Development of carbon conductive additives for advanced lithium ion batteries [J].
Spahr, Michael E. ;
Goers, Dietrich ;
Leone, Antonio ;
Stallone, Salvatore ;
Grivei, Eusebiu .
JOURNAL OF POWER SOURCES, 2011, 196 (07) :3404-3413
[30]   Dispersion, agglomeration, and gelation of LiFePO4 in water-based slurry [J].
Tsai, Feng-Yen ;
Jhang, Jia-Hao ;
Hsieh, Han-Wei ;
Li, Chia-Chen .
JOURNAL OF POWER SOURCES, 2016, 310 :47-53