Minimum-volume enclosing ellipsoids and core sets

被引:189
作者
Kumar, P [1 ]
Yildirim, EA
机构
[1] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Lowner ellipsoids; core sets; approximation algorithms;
D O I
10.1007/s10957-005-2653-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the problem of computing a ( 1 + epsilon)-approximation to the minimum-volume enclosing ellipsoid of a given point set S = {p(1), p(2),..., p(n)} subset of R-d. Based on a simple, initial volume approximation method, we propose a modi. cation of the Khachiyan first-order algorithm. Our analysis leads to a slightly improved complexity bound of O(nd(3)/epsilon) operations for epsilon is an element of(0, 1). As a byproduct, our algorithm returns a core set X subset of S with the property that the minimum-volume enclosing ellipsoid of X provides a good approximation to that of S. Furthermore, the size of X depends on only the dimension d and epsilon, but not on the number of points n. In particular, our results imply that | X| = O(d(2)/epsilon) for epsilon is an element of(0, 1).
引用
收藏
页码:1 / 21
页数:21
相关论文
共 38 条
[31]  
Tarasov S., 1988, SOV MATH DOKL, V37, P226
[32]  
Titterington D., 1978, APPL STATIST, V27, P227
[33]  
TITTERINGTON DM, 1975, BIOMETRIKA, V62, P313, DOI 10.1093/biomet/62.2.313
[34]   Primal-dual path-following algorithms for determinant maximization problems with linear matrix inequalities [J].
Toh, KC .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 1999, 14 (03) :309-330
[35]   Determinant maximization with linear matrix inequality constraints [J].
Vandenberghe, L ;
Boyd, S ;
Wu, SP .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (02) :499-533
[36]   SMALLEST ENCLOSING DISKS (BALLS AND ELLIPSOIDS) [J].
WELZL, E .
LECTURE NOTES IN COMPUTER SCIENCE, 1991, 555 :359-370
[37]   On numerical solution of the maximum volume ellipsoid problem [J].
Zhang, Y ;
Gao, LY .
SIAM JOURNAL ON OPTIMIZATION, 2003, 14 (01) :53-76
[38]  
ZHANG Y, 1998, TR9815 RIC U DEP COM