Minimum-volume enclosing ellipsoids and core sets

被引:189
作者
Kumar, P [1 ]
Yildirim, EA
机构
[1] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Lowner ellipsoids; core sets; approximation algorithms;
D O I
10.1007/s10957-005-2653-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the problem of computing a ( 1 + epsilon)-approximation to the minimum-volume enclosing ellipsoid of a given point set S = {p(1), p(2),..., p(n)} subset of R-d. Based on a simple, initial volume approximation method, we propose a modi. cation of the Khachiyan first-order algorithm. Our analysis leads to a slightly improved complexity bound of O(nd(3)/epsilon) operations for epsilon is an element of(0, 1). As a byproduct, our algorithm returns a core set X subset of S with the property that the minimum-volume enclosing ellipsoid of X provides a good approximation to that of S. Furthermore, the size of X depends on only the dimension d and epsilon, but not on the number of points n. In particular, our results imply that | X| = O(d(2)/epsilon) for epsilon is an element of(0, 1).
引用
收藏
页码:1 / 21
页数:21
相关论文
共 38 条
  • [1] AGGARWAL PK, 2004, P 20 ANN ACM S COMP, P263
  • [2] ALDER I, 1993, MATH PROGRAM, V61, P39
  • [3] [Anonymous], LECT DISCRETE GEOMET
  • [4] Improved complexity for maximum volume inscribed ellipsoids
    Anstreicher, KM
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2002, 13 (02) : 309 - 320
  • [5] Badoiu M, 2003, SIAM PROC S, P801
  • [6] Badoiu M, 2002, P 34 ANN ACM S THEOR, P250, DOI DOI 10.1145/509907.509947
  • [7] Efficiently approximating the minimum-volume bounding box of a point set in three dimensions
    Barequet, G
    Har-Peled, S
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2001, 38 (01): : 91 - 109
  • [8] APPROXIMATING THE VOLUME OF CONVEX-BODIES
    BETKE, U
    HENK, M
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 10 (01) : 15 - 21
  • [9] Bouville C., 1985, Computer Graphics, V19, P45, DOI 10.1145/325165.325176
  • [10] Chan T.M., 2004, Proceedings of the Twentieth Annual Symposium on Computational Geometry, P152