The role of shear stress in the generation of rupture-prone vulnerable plaques

被引:263
|
作者
Slager, CJ
Wentzel, JK
Gijsen, FJH
Schuurbiers, JCH
van der Wal, AC
van der Steen, AFW
Serruys, PW
机构
[1] Erasmus Univ, Thoraxctr, NL-3000 DR Rotterdam, Netherlands
[2] Erasmus Univ, Hemodynam Lab, Dept Biomed Engn, NL-3000 DR Rotterdam, Netherlands
[3] Univ Amsterdam, Acad Med Ctr, NL-1105 AZ Amsterdam, Netherlands
来源
NATURE CLINICAL PRACTICE CARDIOVASCULAR MEDICINE | 2005年 / 2卷 / 08期
关键词
arteries; atherosclerosis; flow remodeling; shear stress; vulnerable plaque;
D O I
10.1038/ncpcardio0274
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Blood-flow-induced shear stress acting on the arterial wall is of paramount importance in vascular biology. Endothelial cells sense shear stress and largely control its value in a feedback-control loop by adapting the arterial dimensions to blood flow. Nevertheless, to allow for variations in arterial geometry, such as bifurcations, shear stress control is modified at certain eccentrically located sites to let it remain at near-zero levels. In the presence of risk factors for atherosclerosis, low shear stress contributes to local endothelial dysfunction and eccentric plaque build up, but normal-to-high shear stress is atheroprotective. Initially, lumen narrowing is prevented by outward vessel remodeling. Maintenance of a normal lumen and, by consequence, a normal shear stress distribution, however, prolongs local unfavorable low shear stress conditions and aggravates eccentric plaque growth. While undergoing such growth, eccentric plaques at preserved lumen locations experience increased tensile stress at their shoulders making them prone to fissuring and thrombosis. Consequent loss of the plaque-free wall by coverage with thrombus and new tissue may bring shear-stress-controlled lumen preservation to an end. This change causes shear stress to increase, which as a new condition may transform the lesion into a rupture-prone vulnerable plaque. We present a discussion of the role of shear stress, in setting the stage for the generation of rupture-prone, vulnerable plaques, and how this may be prevented.
引用
收藏
页码:401 / 407
页数:7
相关论文
共 50 条
  • [21] Understanding the birth of rupture-prone and irreparable micronuclei
    Guo, Xihan
    Dai, Xueqin
    Wu, Xue
    Zhou, Tao
    Ni, Juan
    Xue, Jinglun
    Wang, Xu
    CHROMOSOMA, 2020, 129 (3-4) : 181 - 200
  • [22] Understanding the birth of rupture-prone and irreparable micronuclei
    Xihan Guo
    Xueqin Dai
    Xue Wu
    Tao Zhou
    Juan Ni
    Jinglun Xue
    Xu Wang
    Chromosoma, 2020, 129 : 181 - 200
  • [23] Immunoliposomes for detection of rupture-prone intracranial aneurysms
    Jahromi, Behnam Rezai
    Zamotin, Vladimir
    Code, Christian
    Netti, Eliisa
    Lorey, Martina B.
    Alitalo, Kari
    Oeoerni, Katariina
    Laakso, Aki
    Tulamo, Riikka
    Niemelae, Mika
    ACTA NEUROCHIRURGICA, 2023, 165 (11) : 3353 - 3360
  • [24] Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype
    Hanssen, Nordin M. J.
    Wouters, Kristiaan
    Huijberts, Maya S.
    Gijbels, Marion J.
    Sluimer, Judith C.
    Scheijen, Jean L. J. M.
    Heeneman, Sylvia
    Biessen, Erik A. L.
    Daemen, Mat J. A. P.
    Brownlee, Michael
    de Kleijn, Dominique P.
    Stehouwer, Coen D. A.
    Pasterkamp, Gerard
    Schalkwijk, Casper G.
    EUROPEAN HEART JOURNAL, 2014, 35 (17) : 1137 - 1146
  • [25] Echolucent, rupture-prone carotid plaques associated with elevated triglyceride-rich lipoproteins, particularly in women
    Kofoed, SC
    Gronholdt, MLM
    Bismuth, J
    Wilhjelm, JE
    Sillesen, H
    Nordestgaard, BG
    JOURNAL OF VASCULAR SURGERY, 2002, 36 (04) : 783 - 792
  • [26] In vivo critical fibrous cap thickness for rupture-prone coronary plaques assessed by optical coherence tomography
    Yonetsu, Taishi
    Kakuta, Tsunekazu
    Lee, Tetsumin
    Takahashi, Kentaro
    Kawaguchi, Naohiko
    Yamamoto, Ginga
    Koura, Kenji
    Hishikari, Keiichi
    Iesaka, Yoshito
    Fujiwara, Hideomi
    Isobe, Mitsuaki
    EUROPEAN HEART JOURNAL, 2011, 32 (10) : 1251 - 1259
  • [27] Deletion of Alternatively Spliced Extra Domain A of Cellular Fibronectin Stabilizes Advanced Rupture-Prone Plaques in Hyperlipidemic Mice
    Doddapattar, Prakash
    Dhanesha, Nirav
    Prakash, Prem
    Lentz, Steven R.
    Chauhan, Anil K.
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2016, 36
  • [28] The coronary calcium paradox: Yet another step towards the differentiation between stable and rupture-prone coronary plaques?
    Korosoglou, Grigorios
    Giusca, Sorin
    Katus, Hugo A.
    ATHEROSCLEROSIS, 2018, 274 : 232 - 234
  • [29] Levels of Advanced Glycation Endproducts in Carotid Atherosclerotic Plaques of Individuals With and Without Diabetes are Associated With a Rupture-Prone Phenotype
    Hanssen, Nordin
    Wouters, Kristiaan
    Huijberts, Maya
    Gijbels, Marion
    Sluimer, Judith
    Scheijen, Jean
    Biessen, Erik
    Daemen, Mat
    Brownlee, Micheal
    De Kleijn, Dominique
    Stehouwer, Coen
    Pasterkamp, Gerard
    Schalkwijk, Casper
    DIABETES, 2013, 62 : A53 - A53
  • [30] Fibrinogen predicts ischaemic stroke and advanced atherosclerosis but not echolucent, rupture-prone carotid plaques - The Copenhagen City Heart Study
    Kofoed, SC
    Wittrup, HH
    Sillesen, H
    Nordestgaard, BG
    EUROPEAN HEART JOURNAL, 2003, 24 (06) : 569 - 578