Interactive molecular dynamics in virtual reality for accurate flexible protein-ligand docking

被引:30
作者
Deeks, Helen M. [1 ,2 ,3 ]
Walters, Rebecca K. [1 ,2 ,3 ]
Hare, Stephanie R. [3 ]
O'Connor, Michael B. [1 ,2 ,3 ]
Mulholland, Adrian J. [3 ]
Glowacki, David R. [1 ,2 ,3 ]
机构
[1] Univ Bristol, Sch Chem, Intangible Real Lab, Bristol, Avon, England
[2] Univ Bristol, Dept Comp Sci, Bristol, Avon, England
[3] Univ Bristol, Ctr Computat Chem, Sch Chem, Bristol, Avon, England
来源
PLOS ONE | 2020年 / 15卷 / 03期
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
HIV-1; PROTEASE; FREE-ENERGY; BINDING; INHIBITORS; INFLUENZA; TRYPSIN; POTENT; MECHANISM; KINETICS; SIMULATION;
D O I
10.1371/journal.pone.0228461
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Simulating drug binding and unbinding is a challenge, as the rugged energy landscapes that separate bound and unbound states require extensive sampling that consumes significant computational resources. Here, we describe the use of interactive molecular dynamics in virtual reality (iMD-VR) as an accurate low-cost strategy for flexible protein-ligand docking. We outline an experimental protocol which enables expert iMD-VR users to guide ligands into and out of the binding pockets of trypsin, neuraminidase, and HIV-1 protease, and recreate their respective crystallographic protein-ligand binding poses within 5-10 minutes. Following a brief training phase, our studies shown that iMD-VR novices were able to generate unbinding and rebinding pathways on similar timescales as iMD-VR experts, with the majority able to recover binding poses within 2.15 angstrom RMSD of the crystallographic binding pose. These results indicate that iMD-VR affords sufficient control for users to carry out the detailed atomic manipulations required to dock flexible ligands into dynamic enzyme active sites and recover crystallographic poses, offering an interesting new approach for simulating drug docking and generating binding hypotheses.
引用
收藏
页数:21
相关论文
共 65 条
[1]   Forward flux sampling for rare event simulations [J].
Allen, Rosalind J. ;
Valeriani, Chantal ;
ten Wolde, Pieter Rein .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (46)
[2]   Training Neural Nets To Learn Reactive Potential Energy Surfaces Using Interactive Quantum Chemistry in Virtual Reality [J].
Amabilino, Silvia ;
Bratholm, Lars A. ;
Bennie, Simon J. ;
VaucherM, Alain C. ;
Reiher, Markus ;
Glowacki, David R. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (20) :4486-4499
[3]   Ensemble Docking in Drug Discovery [J].
Amaro, Rommie E. ;
Baudry, Jerome ;
Chodera, John ;
Demir, Ozlem ;
McCammon, J. Andrew ;
Miao, Yinglong ;
Smith, Jeremy C. .
BIOPHYSICAL JOURNAL, 2018, 114 (10) :2271-2278
[4]   Mechanism of 150-cavity formation in influenza neuraminidase [J].
Amaro, Rommie E. ;
Swift, Robert V. ;
Votapka, Lane ;
Li, Wilfred W. ;
Walker, Ross C. ;
Bush, Robin M. .
NATURE COMMUNICATIONS, 2011, 2
[5]  
[Anonymous], 2001, P 2001 S INTERACTIVE, DOI [DOI 10.1145/364338.364398, 10.1145/364338.364398]
[6]  
Atkinson W. D., 1977, Computers & Graphics, V2, P97, DOI 10.1016/0097-8493(77)90009-7
[7]   HYDROGEN-BONDING IN GLOBULAR-PROTEINS [J].
BAKER, EN ;
HUBBARD, RE .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1984, 44 (02) :97-179
[8]   Metadynamics [J].
Barducci, Alessandro ;
Bonomi, Massimiliano ;
Parrinello, Michele .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2011, 1 (05) :826-843
[9]   Transition path sampling: Throwing ropes over rough mountain passes, in the dark [J].
Bolhuis, PG ;
Chandler, D ;
Dellago, C ;
Geissler, PL .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2002, 53 :291-318
[10]   HIV-1 protease: mechanism and drug discovery [J].
Brik, A ;
Wong, CH .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2003, 1 (01) :5-14