Crystal growth control of Ni-based alloys by modulation of the melt pool morphology in DED

被引:29
作者
Shao, Jiayun [1 ,3 ]
Yu, Gang [1 ,2 ,3 ]
Li, Shaoxia [1 ,3 ]
He, Xiuli [1 ,3 ]
Tian, Chongxin [1 ,3 ]
Dong, Binxin [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
关键词
Laser deposition; Crystal growth; Melt pool morphology; Ni-based superalloys; GRAIN-REFINEMENT; MICROSTRUCTURAL CONTROL; LASER; ORIENTATION; DEPOSITION; TRANSITION; ALUMINUM; COLUMNAR;
D O I
10.1016/j.jallcom.2021.162976
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In additive manufacturing especially in directed energy deposition, it is hard to control crystal growth pattern due to the high temperature gradient in AM. Essentially, the crystal grows epitaxially from the substrate and columnar crystals with strong texture are exhibited in AM components. Here, small spot diameter was used for DED-L of Ni-based alloys and various crystal growth patterns were obtained by changing power density. Samples processed under low power density were shown to exhibit wide and shallow spindle-like melt pool, along with apparently hierarchical planar-columnar-equiaxed microstructure. While samples prepared under relatively high power density were shown to exhibit narrower and deeper melt pool with two sharp turning points, exhibiting inclined columnar grains and several discontinuous central axial columnar crystals. When highest power density and small spot diameter were applied, crystal growth with weak texture was achieved. Under this deep and narrow melt pool, the crystal growth can be separated into four regions: nearly-equiaxed grains with random grain orientations; horizontally symmetrically grown crystal grains; axial columnar in the center; columnar grains grew approximately vertical to the boundary of melt pool. Correlations were investigated between melt pool shape, solidification parameters and microstructure. The transformation of melt pool morphology was mainly attributed to the change of power density. Solidification parameters were shown to be different under different melt pool morphology. Diverse crystal growth patterns were achieved under different melt pool morphology controlled by power density, showing the feasibility of site-specific of microstructure control in DED-L according to the required mechanical properties. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 37 条
[2]   Texture control of 316L parts by modulation of the melt pool morphology in selective laser melting [J].
Andreau, Olivier ;
Koutiri, Imade ;
Peyre, Patrice ;
Penot, Jean-Daniel ;
Saintier, Nicolas ;
Pessard, Etienne ;
De Terris, Thibaut ;
Dupuy, Corinne ;
Baudin, Thierry .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2019, 264 :21-31
[3]   Grain morphologies and microstructures of laser melting deposited V-5Cr-5Ti alloys [J].
Bai, Linrui ;
Le, Guomin ;
Liu, Xue ;
Li, Jinfeng ;
Xia, Shengquan ;
Li, Xiuyan .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 745 :716-724
[4]   Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing [J].
Bermingham, M. J. ;
StJohn, D. H. ;
Krynen, J. ;
Tedman-Jones, S. ;
Dargusch, M. S. .
ACTA MATERIALIA, 2019, 168 :261-274
[5]   Revealing the Mechanisms of Grain Nucleation and Formation During Additive Manufacturing [J].
Bermingham, Michael ;
StJohn, David ;
Easton, Mark ;
Yuan, Lang ;
Dargusch, Matthew .
JOM, 2020, 72 (03) :1065-1073
[6]   The mechanical and microstructural characteristics of laser-deposited IN718 [J].
Blackwell, PL .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 170 (1-2) :240-246
[7]   Epitaxial laser deposition of single crystal Ni-based superalloys: Repair of complex geometry [J].
Chen, Hao ;
Lu, Yuanyuan ;
Luo, Deng ;
Lai, Jing ;
Liu, Dejian .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2020, 285
[8]   Microstructural Control of Additively Manufactured Metallic Materials [J].
Collins, P. C. ;
Brice, D. A. ;
Samimi, P. ;
Ghamarian, I. ;
Fraser, H. L. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 46, 2016, 46 :63-91
[9]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[10]   Site specific control of crystallographic grain orientation through electron beam additive manufacturing [J].
Dehoff, R. R. ;
Kirka, M. M. ;
Sames, W. J. ;
Bilheux, H. ;
Tremsin, A. S. ;
Lowe, L. E. ;
Babu, S. S. .
MATERIALS SCIENCE AND TECHNOLOGY, 2015, 31 (08) :931-938