Broadband Single-Mode Hybrid Photonic Crystal Waveguides for Terahertz Integration on a Chip

被引:29
|
作者
Li, Haisu [1 ,2 ]
Low, Mei Xian [3 ,4 ]
Ako, Rajour [3 ,4 ]
Bhaskaran, Madhu [3 ,4 ]
Sriram, Sharath [3 ,4 ]
Withayachumnankul, Withawat [5 ]
Kuhlmey, Boris T. [6 ,7 ]
Atakaramians, Shaghik [2 ]
机构
[1] Beijing Jiaotong Univ, Inst Lightwave Technol, Key Lab All Opt Network & Adv Telecommun Network, Beijing 100044, Peoples R China
[2] UNSW Sydney, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
[3] RMIT Univ, Funct Mat & Microsyst Res Grp, Melbourne, Vic 3000, Australia
[4] RMIT Univ, Micro Nano Res Facil, Melbourne, Vic 3000, Australia
[5] Univ Adelaide, Sch Elect & Elect Engn, Adelaide, SA 5005, Australia
[6] Univ Sydney, Sch Phys, Camperdown, NSW 2006, Australia
[7] Univ Sydney, Inst Photon & Opt Sci IPOS, Camperdown, NSW 2006, Australia
来源
ADVANCED MATERIALS TECHNOLOGIES | 2020年 / 5卷 / 07期
基金
中国国家自然科学基金; 国家重点研发计划; 北京市自然科学基金; 澳大利亚研究理事会;
关键词
integration; microfabrication; photonic crystals; terahertz; waveguides; TRANSMISSION;
D O I
10.1002/admt.202000117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Broadband, low-loss, low-dispersion propagation of terahertz pulses in compact waveguide chips is indispensable for terahertz integration. Conventional 2D photonic crystals (PCs) based terahertz waveguides are either all-metallic or all-dielectric, having either high propagation losses due to the Ohmic loss of metal, or a narrow transmission bandwidth restricted by the range of single-mode operation in a frequency range defined by the PC bandgap, respectively. To address this problem, a hybrid (metal/dielectric) terahertz waveguide chip is developed, where the guided mode is completely confined by parallel gold plates and silicon PCs in vertical and lateral directions, respectively. A unique multiwafer silicon-based fabrication process, including gold-silicon eutectic bonding, micropatterning, and Bosch silicon etching, is employed to achieve the self-supporting hybrid structure. Theoretical and experimental investigations demonstrate that the hybrid waveguide supports a single-mode transmission covering 0.367-0.411 THz (bandwidth of 44 GHz, over twice wider than that of all-silicon PC waveguides) with low loss (below 0.05 dB mm(-1)) and low group velocity dispersion (from -8.4 to -0.8 ps THz(-1) mm(-1)). This work enables more compact, wideband terahertz waveguides and auxiliary functional components that are integratable in chips toward ultra-high-density integrated terahertz devices in particular in the field of wireless communications.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Design and analysis of broadband single-mode photonic crystal fiber for transmission windows of the telecom wavelengths
    Bhowmik, Tanmay
    Maity, Annesha
    OPTIK, 2017, 139 : 366 - 372
  • [22] Single mode lasers based on monolithic integration of ridge waveguides with 2D photonic crystal waveguides
    Happ, TD
    Kamp, M
    Klopf, F
    Forchel, A
    OPTICAL AND QUANTUM ELECTRONICS, 2002, 34 (11) : 1137 - 1144
  • [23] Single mode lasers based on monolithic integration of ridge waveguides with 2D photonic crystal waveguides
    T.D. Happ
    M. Kamp
    F. Klopf
    A. Forchel
    Optical and Quantum Electronics, 2002, 34 : 1137 - 1144
  • [24] Single-polarization single-mode photonic crystal fibers
    Saitoh, K
    Koshiba, M
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2003, 15 (10) : 1384 - 1386
  • [25] Structural study of the single-mode photonic crystal fiber
    Lebbal, M. R.
    Boumaza, T.
    Bouchemat, M.
    OPTIK, 2013, 124 (20): : 4610 - 4613
  • [26] Criterian of single-mode photonic liquid crystal fibers
    Sun, Weimin
    Liu, Xiaoqi
    Liu, Yongjun
    Jiang, Yu
    OPTOELECTRONIC DEVICES AND INTEGRATION III, 2010, 7847
  • [27] Numerical aperture of single-mode photonic crystal fibers
    Mortensen, NA
    Folken, JR
    Skovgaard, PMW
    Broeng, J
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2002, 14 (08) : 1094 - 1096
  • [28] Extended single-mode photonic crystal fiber lasers
    Limpert, J
    Schmidt, O
    Rothhardt, J
    Röser, F
    Schreiber, T
    Tünnermann, A
    Ermeneux, S
    Yvernault, P
    Salin, F
    OPTICS EXPRESS, 2006, 14 (07): : 2715 - 2720
  • [29] Broadband Single-Polarization Single-Mode Operation in Photonic Crystal Fibers With Hexagonally Latticed Circular Airholes
    Lu, Dunke
    Liu, Jin
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (10) : 2452 - 2458
  • [30] Numerical Optimization of Single-Mode Photonic Crystal VCSELs
    Nyakas, Peter
    Kise, Tomofumi
    Karpati, Tamas
    Yokouchi, Noriyuku
    NUSOD '08: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES, 2008, : 93 - +