On the local time of random walk on the 2-dimensional comb

被引:12
作者
Csaki, Endre [1 ]
Csoergo, Miklos [2 ]
Foeldes, Antonia [3 ]
Revesz, Pal [4 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
[3] CUNY Coll Staten Isl, Dept Math, Staten Isl, NY 10314 USA
[4] Vienna Univ Technol, Inst Stat & Wahrscheinlichkeitstheorie, A-1040 Vienna, Austria
基金
加拿大自然科学与工程研究理事会;
关键词
Random walk; 2-dimensional comb; Strong approximation; 2-dimensional Wiener process; Local time; Laws of the iterated logarithm; Iterated Brownian motion; BROWNIAN-MOTION; INCREMENTS; THEOREMS; SITES; BIG; LAW;
D O I
10.1016/j.spa.2011.01.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the path behaviour of general random walks, and that of their local times, on the 2-dimensional comb lattice C-2 that is obtained from Z(2) by removing all horizontal edges off the x-axis. We prove strong approximation results for such random walks and also for their local times. Concentrating mainly on the latter, we establish strong and weak limit theorems, including Strassen-type laws of the iterated logarithm, Hirsch-type laws, and weak convergence results in terms of functional convergence in distribution. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1290 / 1314
页数:25
相关论文
共 44 条
[1]  
[Anonymous], 2002, HDB BROWNIAN MOTION, DOI DOI 10.1007/978-3-0348-8163-0
[2]   Unified continuum description for sub-diffusion random walks on multi-dimensional comb model [J].
Arkhincheev, V. E. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (01) :1-6
[3]   Random walks on the Comb model and its generalizations [J].
Arkhincheev, V. E. .
CHAOS, 2007, 17 (04)
[4]   Anomalous diffusion and charge relaxation on comb model: exact solutions [J].
Arkhincheev, VE .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 280 (3-4) :304-314
[5]   RATES OF CONVERGENCE TO BROWNIAN LOCAL TIME [J].
BASS, RF ;
KHOSHNEVISAN, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1993, 47 (02) :197-213
[6]   THE MOST VISITED SITE OF BROWNIAN-MOTION AND SIMPLE RANDOM-WALK [J].
BASS, RF ;
GRIFFIN, PS .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (03) :417-436
[7]  
BASS RF, 1993, PROG PROBAB, V33, P43
[8]   Uniform asymptotic estimates of transition probabilities on combs [J].
Bertacchi, D ;
Zucca, F .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 75 :325-353
[9]   Asymptotic behaviour of the simple random walk on the 2-dimensional comb [J].
Bertacchi, Daniela .
ELECTRONIC JOURNAL OF PROBABILITY, 2006, 11 :1184-1203
[10]   Iterated Brownian motion and stable(1/4) subordinator [J].
Bertoin, J .
STATISTICS & PROBABILITY LETTERS, 1996, 27 (02) :111-114