A New Methodology to Characterise the Radar Bright Band Using Doppler Spectral Moments from Vertically Pointing Radar Observations

被引:7
作者
Garcia-Benadi, Albert [1 ,2 ]
Bech, Joan [2 ,3 ]
Gonzalez, Sergi [4 ]
Udina, Mireia [2 ]
Codina, Bernat [2 ]
机构
[1] Univ Politecn Cataluna, SARTI, Vilanova I La Geltru 08800, Spain
[2] Univ Barcelona, Dept Appl Phys Meteorol, Barcelona 08028, Spain
[3] Univ Barcelona, Water Res Inst IdRA, Barcelona 08028, Spain
[4] Agencia Estatal Meteorol AEMET, DT Catalonia, Barcelona 08071, Spain
关键词
Doppler radar; bright band; melting level; aliasing; OROGRAPHIC PRECIPITATION; LEVEL; CLASSIFICATION;
D O I
10.3390/rs13214323
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The detection and characterisation of the radar Bright Band (BB) are essential for many applications of weather radar quantitative precipitation estimates, such as heavy rainfall surveillance, hydrological modelling or numerical weather prediction data assimilation. This study presents a new technique to detect the radar BB levels (top, peak and bottom) for Doppler radar spectral moments from the vertically pointing radars applied here to a K-band radar, the MRR-Pro (Micro Rain Radar). The methodology includes signal and noise detection and dealiasing schemes to provide realistic vertical Doppler velocities of precipitating hydrometeors, subsequent calculation of Doppler moments and associated parameters and BB detection and characterisation. Retrieved BB properties are compared with the melting level provided by the MRR-Pro manufacturer software and also with the 0 & DEG;C levels for both dry-bulb temperature (freezing level) and wet-bulb temperature from co-located radio soundings in 39 days. In addition, a co-located Parsivel disdrometer is used to analyse the equivalent reflectivity of the lowest radar height bins confirming consistent results of the new signal and noise detection scheme. The processing methodology is coded in a Python program called RaProM-Pro which is freely available in the GitHub repository.
引用
收藏
页数:20
相关论文
共 46 条
  • [1] Rainfall and DSD Parameters Comparison between Micro Rain Radar, Two-Dimensional Video and Parsivel2 Disdrometers, and S-Band Dual-Polarization Radar
    Adirosi, Elisa
    Baldini, Luca
    Tokay, Ali
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2020, 37 (04) : 621 - 640
  • [2] A note on radar signatures of hydrometeors in the melting layer as inferred from Sentinel-1 SAR data acquired over the ocean
    Alpers, Werner
    Zhao, Yuan
    Mouche, Alexis A.
    Chan, Pak Wai
    [J]. REMOTE SENSING OF ENVIRONMENT, 2021, 253
  • [3] Automatic detection and classification of low-level orographic precipitation processes from space-borne radars using machine learning
    Arulraj, Malarvizhi
    Barros, Ana P.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2021, 257
  • [4] DOPPLER RADAR CHARACTERISTICS OF PRECIPITATION AT VERTICAL INCIDENCE
    ATLAS, D
    SRIVASTAVA, RC
    SEKHON, RS
    [J]. REVIEWS OF GEOPHYSICS, 1973, 11 (01) : 1 - 35
  • [5] Remote sensing analysis of a Mediterranean thundersnow and low-altitude heavy snowfall event
    Bech, Joan
    Pineda, Nicolau
    Rigo, Tomeu
    Aran, Montserrat
    [J]. ATMOSPHERIC RESEARCH, 2013, 123 : 305 - 322
  • [6] Benarroch A, 2020, PROC EUR CONF ANTENN, DOI 10.23919/EuCAP48036.2020.9135509
  • [7] Bordoy R, 2010, TETHYS-J MEDITERR ME, P25, DOI 10.3369/tethys.2010.7.03
  • [8] Detecting the melting layer with a micro rain radar using a neural network approach
    Brast, Maren
    Markmann, Piet
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2020, 13 (12) : 6645 - 6656
  • [9] Nowcasting the precipitation phase combining weather radar data, surface observations, and NWP model forecasts
    Casellas, Enric
    Bech, Joan
    Veciana, Roger
    Pineda, Nicolau
    Miro, Josep Ramon
    More, Jordi
    Rigo, Tomeu
    Sairouni, Abdel
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2021, 147 (739) : 3135 - 3153
  • [10] Surface precipitation phase discrimination in complex terrain
    Casellas, Enric
    Bech, Joan
    Veciana, Roger
    Pineda, Nicolau
    Rigo, Tomeu
    Ramon Miro, Josep
    Sairouni, Abdel
    [J]. JOURNAL OF HYDROLOGY, 2021, 592