Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation

被引:62
作者
AlNouss, Ahmed [1 ]
McKay, Gordon [1 ]
Al-Ansari, Tareq [1 ,2 ]
机构
[1] Hamad Bin Khalifa Univ, Qatar Fdn, Coll Sci & Engn, Div Sustainable Dev, Doha, Qatar
[2] Hamad Bin Khalifa Univ, Coll Sci & Engn, Div Engn Management & Decis Sci, Doha, Qatar
关键词
Biomass gasification; Hydrogen; Enviro-economic; Feedstock blending; Pareto analysis; STEAM GASIFICATION; OXYGEN/STEAM GASIFICATION; SYNGAS PRODUCTION; CO-GASIFICATION; GAS-PRODUCTION; ENRICHED AIR; ENERGY; PERFORMANCE;
D O I
10.1016/j.apenergy.2020.114885
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Concerns related to global warming and the depletion of fossil fuels have propelled the global community to explore alternative renewable energy sources. Biomass is a nonconventional and renewable energy resource that can potentially be utilised for the production of sustainable heat and power. The thermal gasification process is an effective biomass conversion and utilisation method producing syngas as the product gas. This study details a biomass gasification process and subsequent optimisation, considering multiple parameters, including the type of feedstock and gasifying agent (gasifier) to maximise hydrogen production. Aspen Plus software is used to develop three agent-based biomass gasification models considering the characteristics of certain materials from Qatar built environment. The ultimate goal of the study is to optimise the gasification processes to yield different biomass blending options satisfying the maximisation of hydrogen generation through different scenarios. The capabilities of the built-in activated analysis package using Aspen Energy Analyser and Aspen Process Economic Analyser are utilised to evaluate the environmental and economic perspectives. The results demonstrate the excellence of steam-only biomass gasification in providing profitable and cleaner products. The yield of hydrogen production from blending of biomass feedstock achieved a high fraction of 5.23% with the steam-only gasification, while the yield increased from 1.63% to 5.22% for the oxygen/steam gasification when maximising the hydrogen fraction. Moreover, the selective limiting of biomass capacity enhances the quality of syngas through enriching the hydrogen production and lowers the need for subsequent adjustment and the manipulation of gasifying agent quantity and operating energy.
引用
收藏
页数:14
相关论文
共 29 条
[1]  
Ahmad F.L., 2016, SUSTAINABLE SOLUTION
[2]   Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics [J].
Ahmed, I. I. ;
Gupta, A. K. .
APPLIED ENERGY, 2010, 87 (01) :101-108
[3]   Integration of greenhouse gas control technologies within the energy, water and food nexus to enhance the environmental performance of food production systems [J].
Al-Ansari, Tareq ;
Korre, Anna ;
Nie, Zhenggang ;
Shah, Nilay .
JOURNAL OF CLEANER PRODUCTION, 2017, 162 :1592-1606
[4]   Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char [J].
Al-Rahbi, Amal S. ;
Williams, Paul T. .
APPLIED ENERGY, 2017, 190 :501-509
[5]   A comparison of steam and oxygen fed biomass gasification through a techno-economic-environmental study [J].
AlNouss, Ahmed ;
McKay, Gordon ;
Al-Ansari, Tareq .
ENERGY CONVERSION AND MANAGEMENT, 2020, 208
[6]   Applying a Sustainability Metric in Energy, Water and Food Nexus Applications; A Biomass Utilization Case Study to Improve Investment Decisions [J].
AlNouss, Ahmed ;
Namany, Sarah ;
McKay, Gordon ;
Al-Ansari, Tareq .
29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT A, 2019, 46 :205-210
[7]   Production of syngas via gasification using optimum blends of biomass [J].
AlNouss, Ahmed ;
McKay, Gordon ;
Al-Ansari, Tareq .
JOURNAL OF CLEANER PRODUCTION, 2020, 242
[8]   A techno-economic-environmental study evaluating the potential of oxygen-steam biomass gasification for the generation of value-added products [J].
AlNouss, Ahmed ;
McKay, Gordon ;
Al-Ansari, Tareq .
ENERGY CONVERSION AND MANAGEMENT, 2019, 196 :664-676
[9]  
[Anonymous], COMPUTER AIDED CHEM
[10]   Synergistic effects in steam gasification of combined biomass and plastic waste mixtures [J].
Burra, K. G. ;
Gupta, A. K. .
APPLIED ENERGY, 2018, 211 :230-236