Global dynamics of a SD oscillator

被引:40
作者
Chen, Hebai [1 ]
Llibre, Jaume [2 ]
Tang, Yilei [3 ]
机构
[1] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350002, Fujian, Peoples R China
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[3] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
基金
欧盟地平线“2020”; 中国国家自然科学基金;
关键词
SD oscillator; Homoclinic loop; Limit cycle; Hopf bifurcation; Bogdanov-Takens bifurcation; Averaging method; DISCONTINUOUS DYNAMICS; ARCHETYPAL OSCILLATOR; ORBITS; SMOOTH;
D O I
10.1007/s11071-017-3979-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we derive the global bifurcation diagrams of a SD oscillator which exhibits both smooth and discontinuous dynamics depending on the value of a parameter a. We research all possible bifurcations of this system, including Pitchfork bifurcation, degenerate Hopf bifurcation, homoclinic bifurcation, double limit cycle bifurcation, Bautin bifurcation and Bogdanov-Takens bifurcation. Besides, we show that the system has five limit cycles, including four small limit cycles and one large limit cycle. At last, we give all numerical phase portraits to illustrate our results.
引用
收藏
页码:1755 / 1777
页数:23
相关论文
共 17 条
[1]  
[Anonymous], 1997, NONLINEAR OSCILLATIO
[2]  
[Anonymous], 1998, ELEMENTS APPL BIFURC, DOI DOI 10.1007/B98848
[3]   Averaging methods for finding periodic orbits via Brouwer degree [J].
Buica, A ;
Llibre, J .
BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (01) :7-22
[4]   The limit case response of the archetypal oscillator for smooth and discontinuous dynamics [J].
Cao, Qingjie ;
Wiercigroch, Marian ;
Pavlovskaia, Ekaterina E. ;
Grebogi, Celso ;
Thompson, J. Michael T. .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2008, 43 (06) :462-473
[5]   Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics [J].
Cao, Qingjie ;
Wiercigroch, Marian ;
Pavlovskaia, Ekaterina E. ;
Michael, J. ;
Thompson, T. ;
Grebogi, Celso .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1865) :635-652
[6]   Archetypal oscillator for smooth and discontinuous dynamics [J].
Cao, Qingjie ;
Wiercigroch, Marian ;
Pavlovskaia, Ekaterina E. ;
Grebogi, Celso ;
Thompson, J. Michael T. .
PHYSICAL REVIEW E, 2006, 74 (04)
[7]   Global Analysis on the Discontinuous Limit Case of a Smooth Oscillator [J].
Chen, Hebai .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (04)
[8]   Dynamical analysis of a cubic Lienard system with global parameters [J].
Chen, Hebai ;
Chen, Xingwu .
NONLINEARITY, 2015, 28 (10) :3535-3562
[9]  
Chow S.-N., 1994, NORMAL FORMS BIFURCA
[10]   CUBIC LIENARD EQUATIONS WITH LINEAR DAMPING [J].
DUMORTIER, F ;
ROUSSEAU, C .
NONLINEARITY, 1990, 3 (04) :1015-1039