Thermal boundary conductance across metal-nonmetal interfaces: effects of electron-phonon coupling both in metal and at interface

被引:24
作者
Li, Mengjie [1 ]
Wang, Yuanyuan [2 ]
Zhou, Jun [1 ]
Ren, Jie [1 ,3 ]
Li, Baowen [1 ,4 ,5 ,6 ]
机构
[1] Tongji Univ, Sch Phys Sci & Engn, Ctr Phonon & Thermal Energy Sci, Shanghai 200092, Peoples R China
[2] Shanghai Second Polytech Univ, Sch Environm & Mat Engn, Shanghai 201209, Peoples R China
[3] MIT, Dept Chem, Cambridge, MA 02139 USA
[4] Natl Univ Singapore, Dept Phys, Ctr Computat Sci & Engn, Ctr Adv Mat 2D, Singapore 117546, Singapore
[5] Natl Univ Singapore, Graphene Res Ctr, Singapore 117546, Singapore
[6] Natl Univ Singapore, NUS Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore
基金
中国国家自然科学基金;
关键词
HEAT-TRANSFER MECHANISMS; KAPITZA CONDUCTANCE; RELAXATION; TRANSPORT; DIAMOND; LATTICE; TEMPERATURES; RESISTANCE; SCATTERING;
D O I
10.1140/epjb/e2015-50771-8
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We theoretically investigate the thermal boundary conductance across metal-nonmetal interfaces in the presence of the electron-phonon coupling not only in metal but also at interface. The thermal energy can be transferred from metal to nonmetal via three channels: (1) the phonon-phonon coupling at interface; (2) the electron-phonon coupling at interface; and (3) the electron-phonon coupling within metal and then subsequently the phonon-phonon coupling at interface. We find that these three channels can be described by an equivalent series-parallel thermal resistor network, based on which we derive out the analytic expression of the thermal boundary conductance. We then exemplify different contributions from each channel to the thermal boundary conductance in three typical interfaces: Pb-diamond, Ti-diamond, and TiN-MgO. Our results reveal that the competition among above channels determines the thermal boundary conductance.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 48 条
[1]   THEORY OF THERMAL RELAXATION OF ELECTRONS IN METALS [J].
ALLEN, PB .
PHYSICAL REVIEW LETTERS, 1987, 59 (13) :1460-1463
[2]   Heat transfer mechanisms during short-duration laser heating of thin metal films [J].
AlNimr, MA .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 1997, 18 (05) :1257-1268
[3]  
Anisimov S., 1974, PHYS REV B, V66, P375
[4]   Remarkable thermal conductivity reduction in metal-semiconductor nanocomposites [J].
Basu, Tuhin Shuvra ;
Yang, Ronggui ;
Thiagarajan, Suraj Joottu ;
Ghosh, Siddhartha ;
Gierlotka, Stanislaw ;
Ray, Mallar .
APPLIED PHYSICS LETTERS, 2013, 103 (08)
[5]   Heat transport across the metal-diamond interface [J].
Battabyal, M. ;
Beffort, O. ;
Kleiner, S. ;
Vaucher, S. ;
Rohr, L. .
DIAMOND AND RELATED MATERIALS, 2008, 17 (7-10) :1438-1442
[6]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[7]   Thermal conductance of epitaxial interfaces [J].
Costescu, RM ;
Wall, MA ;
Cahill, DG .
PHYSICAL REVIEW B, 2003, 67 (05)
[8]   TIME-RESOLVED OBSERVATION OF ELECTRON-PHONON RELAXATION IN COPPER [J].
ELSAYEDALI, HE ;
NORRIS, TB ;
PESSOT, MA ;
MOUROU, GA .
PHYSICAL REVIEW LETTERS, 1987, 58 (12) :1212-1215
[9]   FEMTOSECOND LASER INTERACTION WITH METALLIC TUNGSTEN AND NONEQUILIBRIUM ELECTRON AND LATTICE TEMPERATURES [J].
FUJIMOTO, JG ;
LIU, JM ;
IPPEN, EP ;
BLOEMBERGEN, N .
PHYSICAL REVIEW LETTERS, 1984, 53 (19) :1837-1840
[10]   Analysis of heterogeneous structures described by the two-temperature model [J].
Giordano, Stefano ;
Manca, Fabio .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 78 :189-202