On the Implementation of Compressive Sensing on Wireless Sensor Network

被引:13
作者
Cao, Dong-Yu [1 ]
Yu, Kai [1 ]
Zhuo, Shu-Guo [2 ]
Hu, Yu-Hen [3 ]
Wang, Zhi [1 ]
机构
[1] Zhejiang Univ, Dept Control Sci & Engn, Hangzhou, Zhejiang, Peoples R China
[2] INRIA Nancy Grand Est, MADYNES Team, Villers Les Nancy, France
[3] Univ Wisconsin, Dept Elect & Comp Engn, 1415 Johnson Dr, Madison, WI 53706 USA
来源
PROCEEDINGS 2016 IEEE FIRST INTERNATIONAL CONFERENCE ON INTERNET-OF-THINGS DESIGN AND IMPLEMENTATION IOTDI 2016 | 2016年
关键词
wireless sensor array networks; compressed sensing; direction of arrival estimation; data compression;
D O I
10.1109/IoTDI.2015.14
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Compressive sensing (CS) is applied to enable real time data transmission in a wireless sensor network by significantly reduce the local computation and sensor data volume that needs to be transmitted over wireless channels to a remote fusion center. By exploiting the sparse structure of commonly used signals in Wireless Sensor Network (WSN) applications, a Compressed Sensing on WSN (CS-WSN) framework is proposed. This is accomplished by (i) random sub-sampling of data collected at sensor node, (ii) transmitting only the sign-bit of the data samples over wireless channels. It is shown that this CS-WSN framework is capable of delivering similar performance as conventional local data compression method while greatly reduce the data volume and local computation. This proposed scheme is validated using a prototype wireless sensor network test bed. Preliminary experimental results clearly validate the superior performance of this proposed scheme.
引用
收藏
页码:229 / 234
页数:6
相关论文
共 15 条
[1]   An Empirical Study of Collaborative Acoustic Source Localization [J].
Ali, Andreas Mantik ;
Asgari, Shadnaz ;
Collier, Travis C. ;
Allen, Michael ;
Girod, Lewis ;
Hudson, Ralph E. ;
Yao, Kung ;
Taylor, Charles E. ;
Blumstein, Daniel T. .
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2009, 57 (03) :415-436
[2]   An overview of sigma-delta converters [J].
Aziz, PM ;
Sorensen, HV ;
VanderSpiegel, J .
IEEE SIGNAL PROCESSING MAGAZINE, 1996, 13 (01) :61-84
[3]   Model-Based Compressive Sensing [J].
Baraniuk, Richard G. ;
Cevher, Volkan ;
Duarte, Marco F. ;
Hegde, Chinmay .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1982-2001
[4]  
Boufounos P. T., 2008, 1 BIT COMPRESSIVE SE
[5]  
Boufounos P. T., 2010, RECONSTRUCTION SPARS
[6]   The restricted isometry property and its implications for compressed sensing [J].
Candes, Emmanuel J. .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) :589-592
[7]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[8]  
Hsu C., 2013, ADAPTIVE COMPRESSIVE, V8750
[9]  
Ledeczi A., 2005, ACM T SENSOR NETWORK, V1, P153
[10]  
Li Y., 2012, DESIGN IMPLEMENT ACO