Classification of Seismic Windows Using Artificial Neural Networks

被引:29
作者
Diersen, Steve [1 ]
Lee, En-Jui [2 ]
Spears, Diana [3 ]
Chen, Po [2 ]
Wang, Liqiang [1 ]
机构
[1] Univ Wyoming, Dept Comp Sci, 1000 Univ Ave, Laramie, WY 82071 USA
[2] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA
[3] LLC, Swarmotics, Laramie, WY 82070 USA
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS) | 2011年 / 4卷
关键词
full-wave tomography; machine learning; artificial neural network; importance-aided neural network; SOUTHERN CALIFORNIA CRUST; WAVE-FORM TOMOGRAPHY; AUTOMATIC CLASSIFICATION; SPECTRAL-ELEMENT; ADJOINT METHODS; UPPER-MANTLE; SIGNALS; SIMULATIONS; WATERSHEDS; ALGORITHM;
D O I
10.1016/j.procs.2011.04.170
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We examine the plausibility of using an Artificial Neural Network (ANN) and an Importance-Aided Neural Network (IANN) for the refinement of the structural model used to create full-wave tomography images. Specifically, we apply the machine learning techniques to classifying segments of observed data wave seismograms and synthetic data wave seismograms as either usable for iteratively refining the structural model or not usable for refinement. Segments of observed and synthetic seismograms are considered usable if they are not too different, a heuristic observation made by a human expert, which is considered a match. The use of the ANN and the IANN for classification of the data wave segments removes the human computational cost of the classification process and removes the need for an expert to oversee all such classifications. Our experiments on the seismic data for Southern California have shown this technique to he promising for both classification accuracy and the reduction of the time required to compute the classification of observed data wave segment and synthetic data wave segment matches.
引用
收藏
页码:1572 / 1581
页数:10
相关论文
共 42 条
  • [1] Abu-Elsoud M. A., 2004, P INT C EL EL COMP E
  • [2] [Anonymous], 1997, MACHINE LEARNING, MCGRAW-HILL SCIENCE/ENGINEERING/MATH
  • [3] Using multi-attribute neural networks classification for seismic carbonate facies mapping: a workflow example from mid-Cretaceous Persian Gulf deposits
    Baaske, U. P.
    Mutti, M.
    Baioni, F.
    Bertozzi, G.
    Naini, M. A.
    [J]. SEISMIC GEOMORPHOLOGY: APPLICATIONS TO HYDROCARBON EXPLORATION AND PRODUCTION, 2007, 277 : 105 - +
  • [4] Benbrahim M, 2005, PROC WRLD ACAD SCI E, V4, P4
  • [5] On topological watersheds
    Bertrand, G
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2005, 22 (2-3) : 217 - 230
  • [6] Brenders A. J., GEOPHYS J INT
  • [7] Full 3D tomography for the crustal structure of the Los Angeles region
    Chen, Po
    Zhao, Li
    Jordan, Thomas H.
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2007, 97 (04) : 1094 - 1120
  • [8] Resolving fault plane ambiguity for small earthquakes
    Chen, Po
    Jordan, Thomas H.
    Zhao, Li
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2010, 181 (01) : 493 - 501
  • [9] Discrimination of earthquakes and underwater explosions using neural networks
    Del Pezzo, E
    Esposito, A
    Giudicepietro, F
    Marinaro, M
    Martini, M
    Scarpetta, S
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2003, 93 (01) : 215 - 223
  • [10] DOWLA FU, 1995, NEURAL NETWORKS SEIS