Stability of the k=3 Read-Rezayi state in chiral two-dimensional systems with tunable interactions

被引:6
作者
Abanin, D. A. [2 ,3 ]
Papic, Z. [1 ]
Barlas, Y. [4 ,5 ]
Bhatt, R. N. [1 ,2 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Princeton Ctr Theoret Sci, Princeton, NJ 08544 USA
[3] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[4] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[5] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA
关键词
INCOMPRESSIBLE QUANTUM FLUID; CHARGE-DENSITY-WAVE; DIRAC FERMIONS; BERRYS PHASE; LANDAU-LEVEL; HALL STATE; BAND-GAP; ELECTRONS; SYMMETRY; LIQUID;
D O I
10.1088/1367-2630/14/2/025009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The k = 3 Read-Rezayi (RR) parafermion quantum Hall state hosts non-Abelian excitations which provide a platform for universal topological quantum computation. Although the RR state may be realized at the filling factor nu = 12/5 in GaAs-based two-dimensional electron systems, the corresponding quantum Hall state is weak and at present nearly impossible to study experimentally. Here we argue that the RR state can alternatively be realized in a class of chiral materials with massless and massive Dirac-like band structure. This family of materials encompasses monolayer and bilayer graphene, as well as topological insulators. We show that, compared to GaAs, these systems provide several important advantages in realizing and studying the RR state. Most importantly, the effective interactions can be tuned in situ by varying the external magnetic field, and by designing the dielectric environment of the sample. This tunability enables the realization of RR state with controllable energy gaps in different Landau levels. It also allows one to probe the quantum phase transitions to other compressible and incompressible phases.
引用
收藏
页数:11
相关论文
共 62 条
[1]   Compression of antiproton clouds for antihydrogen trapping [J].
Andresen, G. B. ;
Bertsche, W. ;
Bowe, P. D. ;
Bray, C. C. ;
Butler, E. ;
Cesar, C. L. ;
Chapman, S. ;
Charlton, M. ;
Fajans, J. ;
Fujiwara, M. C. ;
Funakoshi, R. ;
Gill, D. R. ;
Hangst, J. S. ;
Hardy, W. N. ;
Hayano, R. S. ;
Hayden, M. E. ;
Hydomako, R. ;
Jenkins, M. J. ;
Jorgensen, L. V. ;
Kurchaninov, L. ;
Lambo, R. ;
Madsen, N. ;
Nolan, P. ;
Olchanski, K. ;
Olin, A. ;
Povilus, A. ;
Pusa, P. ;
Robicheaux, F. ;
Sarid, E. ;
El Nasr, S. Seif ;
Silveira, D. M. ;
Storey, J. W. ;
Thompson, R. I. ;
van der Werf, D. P. ;
Wurtele, J. S. ;
Yamazaki, Y. .
PHYSICAL REVIEW LETTERS, 2008, 100 (20)
[2]   Fractional quantum Hall states of Dirac electrons in graphene [J].
Apalkov, Vadim M. ;
Chakraborty, Tapash .
PHYSICAL REVIEW LETTERS, 2006, 97 (12)
[3]  
Bao W, 2011, NAT PHYS, V7, P948, DOI [10.1038/nphys2103, 10.1038/NPHYS2103]
[4]  
Barlas Y, 2011, ARXIV11101069
[5]   Observation of the fractional quantum Hall effect in graphene [J].
Bolotin, Kirill I. ;
Ghahari, Fereshte ;
Shulman, Michael D. ;
Stormer, Horst L. ;
Kim, Philip .
NATURE, 2009, 462 (7270) :196-199
[6]   Competing Topological Orders in the ν=12/5 Quantum Hall State [J].
Bonderson, Parsa ;
Feiguin, Adrian E. ;
Moeller, Gunnar ;
Slingerland, J. K. .
PHYSICAL REVIEW LETTERS, 2012, 108 (03)
[7]   Fractional quantum Hall hierarchy and the second Landau level [J].
Bonderson, Parsa ;
Slingerland, J. K. .
PHYSICAL REVIEW B, 2008, 78 (12)
[8]  
Büttner B, 2011, NAT PHYS, V7, P418, DOI [10.1038/nphys1914, 10.1038/NPHYS1914]
[9]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[10]  
Dean CR, 2011, NAT PHYS, V7, P693, DOI [10.1038/NPHYS2007, 10.1038/nphys2007]