ON A GENERALIZATION OF RIGHT DUO RINGS

被引:8
作者
Kim, Nam Kyun [1 ]
Kwak, Tai Keun [2 ]
Lee, Yang [3 ]
机构
[1] Hanbat Natl Univ, Sch Basic Sci, Daejeon 34158, South Korea
[2] Daejin Univ, Dept Math, Pochon 11159, South Korea
[3] Pusan Natl Univ, Dept Math Educ, Pusan 46241, South Korea
基金
新加坡国家研究基金会;
关键词
right pi-duo ring; (weakly) right duo ring; (strongly) pi-regular ring; every prime ideal is maximal; polynomial ring; matrix ring;
D O I
10.4134/BKMS.b150441
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the structure of rings whose principal right ideals contain a sort of two-sided ideals, introducing right pi-duo as a generalization of (weakly) right duo rings. Abelian pi-regular rings are pi-duo, which is compared with the fact that Abelian regular rings are duo. For a right pi-duo ring R, it is shown that every prime ideal of R is maximal if and only if R is a (strongly) pi-regular ring with J(R) = N-* (R). This result may be helpful to develop several well-known results related to pm rings (i.e., rings whose prime ideals are maximal). We also extend the right pi-duo property to several kinds of ring which have roles in ring theory.
引用
收藏
页码:925 / 942
页数:18
相关论文
共 28 条
  • [1] Azumaya G., 1954, J FS HOKKAIDO U, V13, P034
  • [2] On Abelian pi-regular rings
    Badawi, A
    [J]. COMMUNICATIONS IN ALGEBRA, 1997, 25 (04) : 1009 - 1021
  • [3] CHAIN RINGS AND PRIME IDEALS
    BRUNGS, HH
    TORNER, G
    [J]. ARCHIV DER MATHEMATIK, 1976, 27 (03) : 253 - 260
  • [4] Buhpang A.M., 2002, Arab J. Mathematical Sciences, V18, P53
  • [5] DISCHINGER F, 1976, CR ACAD SCI A MATH, V283, P571
  • [6] Dorroh J. L., 1932, B AM MATH SOC, V38, P85
  • [7] Feller E.H., 1958, T AM MATH SOC, V89, P79
  • [8] Goodearl K. R., 1979, VONNEUMANN REGULAR R
  • [9] ON STRONGLY BOUNDED RINGS AND DUO RINGS
    HIRANO, Y
    HONG, CY
    KIM, JY
    [J]. COMMUNICATIONS IN ALGEBRA, 1995, 23 (06) : 2199 - 2214
  • [10] Hirano Y., 1978, Math. J. Okayama Univ, V20, P141