Electrical discharge machinable (Y, Nd) co-stabilized zirconia - Niobium carbide ceramics

被引:5
作者
Gommeringer, Andrea [1 ]
Schweizer, Christopher [1 ]
Kern, Frank [1 ]
Gadow, Rainer [1 ]
机构
[1] Univ Stuttgart, Inst Mfg Technol Ceram Components & Composites IF, Allmandring 7b, D-70569 Stuttgart, Germany
关键词
Electrical discharge machining; Electrically conductive ceramics; Mechanical properties; Tetragonal zirconia; Niobium carbide; MECHANICAL-PROPERTIES; ZRO2-WC COMPOSITES; THERMODYNAMICS; TRANSFORMATION; TOUGHNESS; TIB2; TIN;
D O I
10.1016/j.jeurceramsoc.2019.11.004
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrical discharge machining (EDM) of electrically conductive ceramics offers the possibility to manufacture customized ceramic components from sintered blanks. In this study two different yttria neodymia co-stabilized TZP materials containing 28 vol% niobium carbide were manufactured by hot pressing at 1275 degrees C-1400 degrees C and axial pressure of 60 MPa and compared to a 3Y-TZP based reference. The co-stabilized ceramics offer a strength up to 1250 MPa and a hardness of 14 GPa. The fracture resistance can be tailored between 7.4-9.7 MPa root m by variation of the yttria/neodymia ratio and the sintering temperature. These composites, however, require an exact setup of machining parameters. Die sinking EDM experiments revealed that the dominant material removal mechanism is melting. Machined surfaces can achieve low roughness Ra = 0.3 mu m combined with material removal rates of 1.5 mm(3)/min. The choice of excessively high energy parameters in EDM may lead to crack formation, spallation and phase accumulation during re-solidification.
引用
收藏
页码:3723 / 3732
页数:10
相关论文
共 41 条
[1]   Hard, tough and strong ZrO2-WC composites from nanosized powders [J].
Anné, G ;
Put, S ;
Vanmeensel, K ;
Jiang, DT ;
Vleugels, J ;
Van der Biest, O .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2005, 25 (01) :55-63
[2]  
Bucciotti F, 2010, J APPL BIOMATER BIOM, V8, P28
[3]   Ceramic materials for thermal barrier coatings [J].
Cao, XQ ;
Vassen, R ;
Stoever, D .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (01) :1-10
[4]   A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .2. STRENGTH METHOD [J].
CHANTIKUL, P ;
ANSTIS, GR ;
LAWN, BR ;
MARSHALL, DB .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1981, 64 (09) :539-543
[5]   Thermodynamic modeling of the ZrO2-YO1.5 system [J].
Chen, M ;
Hallstedt, B ;
Gauckler, LJ .
SOLID STATE IONICS, 2004, 170 (3-4) :255-274
[6]   INTERFACE DEBONDING AND FIBER CRACKING IN BRITTLE MATRIX COMPOSITES [J].
EVANS, AG ;
HE, MY ;
HUTCHINSON, JW .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1989, 72 (12) :2300-2303
[7]   TEM and EBSD comparative studies of oxide-carbide composites [J].
Faryna, M .
MATERIALS CHEMISTRY AND PHYSICS, 2003, 81 (2-3) :301-304
[8]  
Gadow R., 2014, Comprehensive Hard Materials, V2, P207, DOI [10.1016/B978-0-08-096527-7.00025-8, DOI 10.1016/B978-0-08-096527-7.00025-8]
[9]   Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures [J].
Goff, JP ;
Hayes, W ;
Hull, S ;
Hutchings, MT ;
Clausen, KN .
PHYSICAL REVIEW B, 1999, 59 (22) :14202-14219
[10]   Enhanced Mechanical Properties in ED-Machinable Zirconia-Tungsten Carbide Composites with Yttria-Neodymia Co-Stabilized Zirconia Matrix [J].
Gommeringer, Andrea ;
Kern, Frank ;
Gadow, Rainer .
CERAMICS-SWITZERLAND, 2018, 1 (01) :26-37