A posteriori error estimates for the fractional-step θ-scheme for linear parabolic equations

被引:4
|
作者
Karakatsani, Fotini [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
a posteriori error estimates; linear parabolic equations; fractional-step theta-scheme; FINITE-ELEMENT METHODS; CRANK-NICOLSON METHOD; ELLIPTIC RECONSTRUCTION; DISCRETIZATIONS;
D O I
10.1093/imanum/drq033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive residual-based a posteriori error estimates of optimal order for time discretizations of linear parabolic equations by the fractional-step theta-scheme. We first consider the time semidiscrete problem. The main tool of our analysis is an appropriate reconstruction of the piecewise linear interpolant of the approximate solution that leads to a residual of optimal order. Next we extend the above-mentioned results to the case of a full discretization. The theoretical results are justified with numerical experiments.
引用
收藏
页码:141 / 162
页数:22
相关论文
共 50 条