Small-angle X-ray scattering method to characterize molecular interactions: Proof of concept

被引:29
作者
Allec, Nicholas [1 ]
Choi, Mina [1 ,2 ]
Yesupriya, Nikhil [1 ]
Szychowski, Brian [3 ]
White, Michael R. [3 ]
Kann, Maricel G. [4 ]
Garcin, Elsa D. [3 ]
Daniel, Marie-Christine [3 ]
Badano, Aldo [1 ]
机构
[1] US FDA, Div Imaging Diagnost & Software Reliabil, Off Sci & Engn Labs, Ctr Devices & Radiol Hlth, Silver Spring, MD 20993 USA
[2] Univ Maryland, Fischell Dept Bioengn, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Chem & Biochem, College Pk, MD USA
[4] Univ Maryland, Dept Biol Sci, College Pk, MD USA
基金
美国国家科学基金会;
关键词
PROTEIN-PROTEIN INTERACTIONS; GOLD NANOPARTICLES; BIOLOGICAL MACROMOLECULES; STRUCTURAL-CHANGES; SIZE; DNA; DISTANCE; SYSTEM;
D O I
10.1038/srep12085
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Characterizing biomolecular interactions is crucial to the understanding of biological processes. Existing characterization methods have low spatial resolution, poor specificity, and some lack the capability for deep tissue imaging. We describe a novel technique that relies on small-angle X-ray scattering signatures from high-contrast molecular probes that correlate with the presence of biomolecular interactions. We describe a proof-of-concept study that uses a model system consisting of mixtures of monomer solutions of gold nanoparticles (GNPs) as the non-interacting species and solutions of GNP dimers linked with an organic molecule (dimethyl suberimidate) as the interacting species. We report estimates of the interaction fraction obtained with the proposed small-angle X-ray scattering characterization method exhibiting strong correlation with the known relative concentration of interacting and non-interacting species.
引用
收藏
页数:12
相关论文
共 54 条
[41]   RETRACTED: A DNA-based method for rationally assembling nanoparticles into macroscopic materials (Retracted article. See vol. 671, 2023) [J].
Mirkin, CA ;
Letsinger, RL ;
Mucic, RC ;
Storhoff, JJ .
NATURE, 1996, 382 (6592) :607-609
[42]   Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography [J].
Novak, JP ;
Nickerson, C ;
Franzen, S ;
Feldheim, DL .
ANALYTICAL CHEMISTRY, 2001, 73 (23) :5758-5761
[43]   Polymer and biopolymer mediated self-assembly of gold nanoparticles [J].
Ofir, Yuval ;
Samanta, Bappaditya ;
Rotello, Vincent M. .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (09) :1814-1823
[44]   Structure of gold nanoparticles suspended in water studied by x-ray diffraction and computer simulations [J].
Petkov, V ;
Peng, Y ;
Williams, G ;
Huang, BH ;
Tomalia, D ;
Ren, Y .
PHYSICAL REVIEW B, 2005, 72 (19)
[45]   Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET) [J].
Pfleger, KDG ;
Eidne, KA .
NATURE METHODS, 2006, 3 (03) :165-+
[46]   Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome [J].
Ramani, AK ;
Bunescu, RC ;
Mooney, RJ ;
Marcotte, EM .
GENOME BIOLOGY, 2005, 6 (05)
[47]   Classification of breast tissue using a laboratory system for small-angle x-ray scattering (SAXS) [J].
Sidhu, S. ;
Falzon, G. ;
Hart, S. A. ;
Fox, J. G. ;
Lewis, R. A. ;
Siu, K. K. W. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (21) :6779-6791
[48]   Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing [J].
Svergun, DI .
BIOPHYSICAL JOURNAL, 1999, 76 (06) :2879-2886
[49]   Gold Nanoparticles: A Revival in Precious Metal Administration to Patients [J].
Thakor, A. S. ;
Jokerst, J. ;
Zavaleta, C. ;
Massoud, T. F. ;
Gambhir, S. S. .
NANO LETTERS, 2011, 11 (10) :4029-4036
[50]   A STUDY OF THE NUCLEATION AND GROWTH PROCESSES IN THE SYNTHESIS OF COLLOIDAL GOLD [J].
TURKEVICH, J ;
STEVENSON, PC ;
HILLIER, J .
DISCUSSIONS OF THE FARADAY SOCIETY, 1951, (11) :55-&