Modeling protein dynamics in Caenorhabditis elegans embryos reveals that the PLK-1 gradient relies on weakly coupled reaction-diffusion mechanisms

被引:4
作者
Barbieri, Sofia [1 ]
Ravi, Aparna Nurni [2 ]
Griffin, Erik E. [2 ]
Gotta, Monica [1 ]
机构
[1] Univ Geneva, Fac Med, Dept Cell Physiol & Metab, CH-1211 Geneva, Switzerland
[2] Dartmouth Coll, Dept Biol Sci, Hanover, NH 03755 USA
基金
瑞士国家科学基金会;
关键词
computational modeling; intracellular gradient establishment; reaction-diffusion; polo-like kinase; MEX-5; POLO-LIKE KINASE; NUCLEAR-ENVELOPE BREAKDOWN; PAR PROTEINS; POSITIONAL INFORMATION; POLARITY; ASYMMETRY; MEX-5; ESTABLISHMENT; POLARIZATION; DIVISION;
D O I
10.1073/pnas.2114205119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein gradients have fundamental roles in cell and developmental biology. In the one-cell Caenorhabditis elegans embryo, the mitotic Polo-Like Kinase 1 (PLK-1) forms an anterior-rich cytoplasmic gradient, which is crucial for asymmetric cell division and embryonic development. The PLK-1 gradient depends on the RNA binding Muscle-EXcess-5 protein (MEX-5), whose slow-diffusing complexes accumulate in the anterior via a reaction-diffusion mechanism. Here, we combine experiments and a computational approach to investigate the dynamics of PLK-1 gradient formation. We find that the gradient of PLK-1 initiates later, is less steep, and forms with slower dynamics than does the MEX-5 gradient. The data show that PLK-1 diffuses faster than MEX-5 in both anterior and posterior cytoplasmic regions. Our simulations suggest that binding to slow-diffusing MEX-5 is required for PLK-1 gradient formation, but that a significant fraction of unbound PLK-1 is necessary to justify the different gradient dynamics. We provide a computational tool able to predict gradient establishment prior to cell division and show that a two-component, bound and unbound, model of PLK-1 dynamics recapitulates the experimental observations.
引用
收藏
页数:11
相关论文
共 52 条
[1]   Understanding the Polo Kinase machine [J].
Archambault, V. ;
Lepine, G. ;
Kachaner, D. .
ONCOGENE, 2015, 34 (37) :4799-4807
[2]   Polo-like kinases: conservation and divergence in their functions and regulation [J].
Archambault, Vincent ;
Glover, David M. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2009, 10 (04) :265-275
[3]   Quantifying spatiotemporal gradient formation in early Caenorhabditis elegans embryos with lightsheet microscopy [J].
Benelli, Rebecca ;
Struntz, Philipp ;
Hofmann, Dirk ;
Weiss, Matthias .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (29)
[4]   Protein concentration gradients and switching diffusions [J].
Bressloff, Paul C. ;
Lawley, Sean D. ;
Murphy, Patrick .
PHYSICAL REVIEW E, 2019, 99 (03)
[5]   Switching Polo-like kinase-1 on and off in time and space [J].
Bruinsma, Wytse ;
Raaijmakers, Jonne A. ;
Medema, Rene H. .
TRENDS IN BIOCHEMICAL SCIENCES, 2012, 37 (12) :534-542
[6]   PLK-1 asymmetry contributes to asynchronous cell division of C. elegans embryos [J].
Budirahardja, Yemima ;
Goenczy, Pierre .
DEVELOPMENT, 2008, 135 (07) :1303-1313
[7]   Diverse and dynamic sources and sinks in gradient formation and directed migration [J].
Cai, Danfeng ;
Montell, Denise J. .
CURRENT OPINION IN CELL BIOLOGY, 2014, 30 :91-98
[8]  
Chase D, 2000, GENESIS, V26, P26, DOI 10.1002/(SICI)1526-968X(200001)26:1<26::AID-GENE6>3.0.CO
[9]  
2-O
[10]   Regulating a key mitotic regulator, polo-like kinase 1 (PLK1) [J].
Colicino, Erica G. ;
Hehnly, Heidi .
CYTOSKELETON, 2018, 75 (11) :481-494