A Novel Band Selection and Spatial Noise Reduction Method for Hyperspectral Image Classification

被引:64
作者
Fu, Hang [1 ,2 ]
Zhang, Aizhu [1 ,2 ]
Sun, Genyun [1 ,2 ]
Ren, Jinchang [3 ,4 ]
Jia, Xiuping [5 ]
Pan, Zhaojie [1 ,2 ]
Ma, Hongzhang [6 ]
机构
[1] China Univ Petr East China, Coll Oceanog & Space Informat, Qingdao 266580, Peoples R China
[2] Qingdao Natl Lab Marine Sci & Technol, Lab Marine Mineral Resources, Qingdao 266237, Peoples R China
[3] Guangdong Polytech Normal Univ, Sch Comp Sci, Guangzhou 510665, Peoples R China
[4] Robert Gordon Univ, Natl Subsea Ctr, Aberdeen AB21 0BH, Scotland
[5] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[6] China Univ Petr East China, Coll Sci, Qingdao 266580, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Data mining; Redundancy; Support vector machines; Sun; Matched filters; Hyperspectral imaging; Band selection (BS); dimensionality reduction (DR); enhanced 2-D singular spectrum analysis (E2DSSA); hyperspectral image (HSI); image classification; FEATURE-EXTRACTION; DIMENSIONALITY REDUCTION; NEURAL-NETWORK; PCA; FUSION;
D O I
10.1109/TGRS.2022.3189015
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
As an essential reprocessing method, dimensionality reduction (DR) can reduce the data redundancy and improve the performance of hyperspectral image (HSI) classification. A novel unsupervised DR framework with feature interpretability, which integrates both band selection (BS) and spatial noise reduction method, is proposed to extract low-dimensional spectral-spatial features of HSI. We proposed a new neighborhood grouping normalized matched filter (NGNMF) for BS, which can reduce the data dimension while preserving the corresponding spectral information. An enhanced 2-D singular spectrum analysis (E2DSSA) method is also proposed to extract the spatial context and structural information from each selected band, aiming to decrease the intraclass variability and reduce the effect of noise in the spatial domain. The support vector machine (SVM) classifier is used to evaluate the effectiveness of the extracted spectral-spatial low-dimensional features. Experimental results on three publicly available HSI datasets have fully demonstrated the efficacy of the proposed NGNMF-E2DSSA method, which has surpassed a number of state-of-the-art DR methods.
引用
收藏
页数:13
相关论文
共 58 条
[1]   Hyperspectral Image Classification-Traditional to Deep Models: A Survey for Future Prospects [J].
Ahmad, Muhammad ;
Shabbir, Sidrah ;
Roy, Swalpa Kumar ;
Hong, Danfeng ;
Wu, Xin ;
Yao, Jing ;
Khan, Adil Mehmood ;
Mazzara, Manuel ;
Distefano, Salvatore ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :968-999
[2]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[3]   MIMN-DPP: Maximum-information and minimum-noise determinantal point processes for unsupervised hyperspectral band selection [J].
Chen, Weizhao ;
Yang, Zhijing ;
Ren, Jinchang ;
Cao, Jiangzhong ;
Cai, Nian ;
Zhao, Huimin ;
Yuen, Peter .
PATTERN RECOGNITION, 2020, 102
[4]   Automatic Design of Convolutional Neural Network for Hyperspectral Image Classification [J].
Chen, Yushi ;
Zhu, Kaiqiang ;
Zhu, Lin ;
He, Xin ;
Ghamisi, Pedram ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09) :7048-7066
[5]   Classification of Hyperspectral Images by Using Extended Morphological Attribute Profiles and Independent Component Analysis [J].
Dalla Mura, Mauro ;
Villa, Alberto ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Bruzzone, Lorenzo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2011, 8 (03) :542-546
[6]  
Donoho D., 2000, HIGH DIMENSIONAL DAT
[7]   Spectral and Spatial Classification of Hyperspectral Images Based on ICA and Reduced Morphological Attribute Profiles [J].
Falco, Nicola ;
Benediktsson, Jon Atli ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (11) :6223-6240
[8]   Unsupervised feature selection based on maximum information and minimum redundancy for hyperspectral images [J].
Feng, Jie ;
Jiao, Licheng ;
Liu, Fang ;
Sun, Tao ;
Zhang, Xiangrong .
PATTERN RECOGNITION, 2016, 51 :295-309
[9]   Fusion of PCA and Segmented-PCA Domain Multiscale 2-D-SSA for Effective Spectral-Spatial Feature Extraction and Data Classification in Hyperspectral Imagery [J].
Fu, Hang ;
Sun, Genyun ;
Ren, Jinchang ;
Zhang, Aizhu ;
Jia, Xiuping .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[10]   Feature Extraction With Multiscale Covariance Maps for Hyperspectral Image Classification [J].
He, Nanjun ;
Paoletti, Mercedes E. ;
Mario Haut, Juan ;
Fang, Leyuan ;
Li, Shutao ;
Plaza, Antonio ;
Plaza, Javier .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02) :755-769