Eigenvalues of non-Hermitian random matrices and Brown measure of non-normal operators: Hermitian reduction and linearization method

被引:21
作者
Belinschi, Serban T. [1 ,2 ]
Sniady, Piotr [3 ]
Speicher, Roland [4 ]
机构
[1] Univ Paul Sabatier, Inst Math Toulouse, CNRS, 118 Route Narbonne, F-31062 Toulouse 9, France
[2] Queens Univ, Dept Math & Stat, Jeffery Hall,48 Univ Ave, Kingston, ON K7L 3N6, Canada
[3] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00956 Warsaw, Poland
[4] Univ Saarland, Fachrichtung Math 6 1, Postfach 151150, D-66041 Saarbrucken, Germany
基金
加拿大自然科学与工程研究理事会; 欧洲研究理事会;
关键词
Eigenvalues of non-Hermitian random matrices; Brown measure; Non-normal operators; R-DIAGONAL ELEMENTS;
D O I
10.1016/j.laa.2017.09.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Brown measure of certain non-Hermitian operators arising from Voiculescu's free probability theory. Usually those operators appear as the limit in star-moments of certain ensembles of non-Hermitian random matrices, and the Brown measure gives then a canonical candidate for the limit eigen-value distribution of the random matrices. A prominent class for our operators is given by polynomials in star-free variables. Other explicit examples include R-diagonal elements and elliptic elements, for which the Brown measure was already known, and a new class of triangular-elliptic elements. Our method for the calculation of the Brown measure is based on a rigorous mathematical treatment of the Hermitian reduction method, as considered in the physical literature, combined with subordination and the linearization trick. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:48 / 83
页数:36
相关论文
共 40 条
[1]   Moment formulas for the quasi-nilpotent DT-operator [J].
Aagaard, L ;
Haagerup, U .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2004, 15 (06) :581-628
[2]   CONVERGENCE OF THE LARGEST SINGULAR VALUE OF A POLYNOMIAL IN INDEPENDENT WIGNER MATRICES [J].
Anderson, Greg W. .
ANNALS OF PROBABILITY, 2013, 41 (3B) :2103-2181
[3]  
[Anonymous], 1979, LECT VONNEUMANN ALGE
[4]   Infinite divisibility and a non-commutative Boolean-to-free Bercovici-Pata bijection [J].
Belinschi, S. T. ;
Popa, M. ;
Vinnikov, V. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (01) :94-123
[5]   Squared eigenvalue condition numbers and eigenvector correlations from the single ring theorem [J].
Belinschi, Serban ;
Nowak, Maciej A. ;
Speicher, Roland ;
Tarnowski, Wojciech .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (10)
[6]   Analytic subordination theory of operator-valued free additive convolution and the solution of a general random matrix problem [J].
Belinschi, Serban T. ;
Mai, Tobias ;
Speicher, Roland .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 732 :21-53
[7]   The Lebesgue decomposition of the free additive convolution of two probability distributions [J].
Belinschi, Serban Teodor .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 142 (1-2) :125-150
[8]   Partially defined semigroups relative to multiplicative free convolution [J].
Belinschi, ST ;
Bercovici, H .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (02) :65-101
[9]  
Bercovici H, 1998, OPER THEOR, V104, P37
[10]  
Berstel J., 1984, RATIONAL SERIES THEI