Geometrical explanation and application of some algebraic direct methods

被引:4
作者
Zhang Shan-Qing [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Hangzhou Dianzi Univ, Inst Graph & Image, Hangzhou 310018, Peoples R China
关键词
differential equation; polygon; geometrical explanation; exact solution;
D O I
10.7498/aps.57.1335
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the polygons of the differential equation, geometrical explanation for some algebraic direct methods is given, and its generalization of differential system is presented. Finally, the validity of this explanation is illustrated with variant Boussinesq system.
引用
收藏
页码:1335 / 1338
页数:4
相关论文
共 17 条
[1]   Asymptotic behaviour and expansions of solutions of an ordinary differential equations [J].
Bruno, AD .
RUSSIAN MATHEMATICAL SURVEYS, 2004, 59 (03) :429-480
[2]  
Chen Y, 2004, CHINESE PHYS, V13, P5
[3]   Power and non-power expansions of the solutions for the fourth-order analogue to the second Painleve equation [J].
Demina, Maria V. ;
Kudryashov, Nikolai A. .
CHAOS SOLITONS & FRACTALS, 2007, 32 (01) :124-144
[4]   New solutions to mKdV equation [J].
Fu, ZT ;
Liu, SD ;
Liu, SK .
PHYSICS LETTERS A, 2004, 326 (5-6) :364-374
[5]  
KUDRYASHOV NA, 1990, PMM-J APPL MATH MEC+, V54, P372
[6]   EXACT-SOLUTIONS OF THE GENERALIZED KURAMOTO-SIVASHINSKY EQUATION [J].
KUDRYASHOV, NA .
PHYSICS LETTERS A, 1990, 147 (5-6) :287-291
[7]   Polygons of differential equations for finding exact solutions [J].
Kudryashov, Nikolai A. ;
Demina, Maria V. .
CHAOS SOLITONS & FRACTALS, 2007, 33 (05) :1480-1496
[8]   Power expansions for solution of the fourth-order analog to the first Painleve equation [J].
Kudryashov, Nikolai A. ;
Efimova, Olga Yu. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (01) :110-124
[9]   Explicit exact solutions to nonlinear coupled differential equations [J].
Li, ZB ;
Yao, RX .
ACTA PHYSICA SINICA, 2001, 50 (11) :2062-2067
[10]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74