Retrotransposons in pluripotent cells: Impact and new roles in cellular plasticity

被引:12
作者
Macia, Angela
Blanco-Jimenez, Eva
Garcia-Perez, Jose L.
机构
[1] Univ Granada, Pfizer, Ctr Genom & Oncol, GENYO,Dept Human DNA Variabil, Granada 18016, Spain
[2] Andalusian Reg Govt, PIS Granada, Granada 18016, Spain
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS | 2015年 / 1849卷 / 04期
基金
欧洲研究理事会;
关键词
Transposition; Retrotransposition; Long non coding RNA; Genome biology; Pluripotency; Stem cell; NON-LTR RETROTRANSPOSONS; L1; RETROTRANSPOSITION; LINE-1; TRANSPOSABLE ELEMENTS; ORF1; PROTEIN; STEM-CELLS; REVERSE TRANSCRIPTION; ANTISENSE PROMOTER; DNA METHYLATION; SVA ELEMENTS;
D O I
10.1016/j.bbagrm.2014.07.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transposable Elements are pieces of DNA able to mobilize from one location to another within genomes. Although they constitute more than 50% of the human genome, they have been classified as selfish DNA, with the only mission to spread within genomes and generate more copies of themselves that will ensure their presence over generations. Despite their remarkable prevalence, only a minor group of transposable elements remain active in the human genome and can sporadically be associated with the generation of a genetic disorder due to their ongoing mobility. Most of the transposable elements identified in the human genome corresponded to fixed insertions that no longer move in genomes. As selfish DNA, transposable element insertions accumulate in cell types where genetic information can be passed to the next generation. Indeed, work from different laboratories has demonstrated that the main heritable load of TE accumulation in humans occurs during early embryogenesis. Thus, active transposable elements have a clear impact on our pluripotent genome. However, recent findings suggest that the main proportion of fixed non-mobile transposable elements might also have emerging roles in cellular plasticity. In this concise review, we provide an overview of the impact of currently active transposable elements in our pluripotent genome and further discuss new roles of transposable elements (active or not) in regulating pluripotency. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:417 / 426
页数:10
相关论文
共 125 条
[31]   Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition [J].
Feng, QH ;
Moran, JV ;
Kazazian, HH ;
Boeke, JD .
CELL, 1996, 87 (05) :905-916
[32]   Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance [J].
Fort, Alexandre ;
Hashimoto, Kosuke ;
Yamada, Daisuke ;
Salimullah, Md ;
Keya, Chaman A. ;
Saxena, Alka ;
Bonetti, Alessandro ;
Voineagu, Irina ;
Bertin, Nicolas ;
Kratz, Anton ;
Noro, Yukihiko ;
Wong, Chee-Hong ;
de Hoon, Michiel ;
Andersson, Robin ;
Sandelin, Albin ;
Suzuki, Harukazu ;
Wei, Chia-Lin ;
Koseki, Haruhiko ;
Hasegawa, Yuki ;
Forrest, Alistair R. R. ;
Carninci, Piero .
NATURE GENETICS, 2014, 46 (06) :558-566
[33]   MOV10L1 is necessary for protection of spermatocytes against retrotransposons by Piwi-interacting RNAs [J].
Frost, Robert J. A. ;
Hamra, F. Kent ;
Richardson, James A. ;
Qi, Xiaoxia ;
Bassel-Duby, Rhonda ;
Olson, Eric N. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (26) :11847-11852
[34]   LINE-1 retrotransposition in human embryonic stem cells [J].
Garcia-Perez, Jose L. ;
Marchetto, Maria C. N. ;
Muotri, Alysson R. ;
Coufal, Nicole G. ;
Gage, Fred H. ;
O'Shea, K. Sue ;
Moran, John V. .
HUMAN MOLECULAR GENETICS, 2007, 16 (13) :1569-1577
[35]   Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells [J].
Garcia-Perez, Jose L. ;
Morell, Maria ;
Scheys, Joshua O. ;
Kulpa, Deanna A. ;
Morell, Santiago ;
Carter, Christoph C. ;
Hammer, Gary D. ;
Collins, Kathleen L. ;
O'Shea, K. Sue ;
Menendez, Pablo ;
Moran, John V. .
NATURE, 2010, 466 (7307) :769-773
[36]   Multiple fates of L1 retrotransposition intermediates in cultured human cells [J].
Gilbert, N ;
Lutz, S ;
Morrish, TA ;
Moran, JV .
MOLECULAR AND CELLULAR BIOLOGY, 2005, 25 (17) :7780-7795
[37]   Retrotransposons revisited: The restraint and rehabilitation of parasites [J].
Goodier, John L. ;
Kazazian, Haig H., Jr. .
CELL, 2008, 135 (01) :23-35
[38]   LINE-1 ORF1 protein localizes in stress granules with other RNA-Binding proteins, including components of RNA interference RNA-induced silencing complex [J].
Goodier, John L. ;
Zhang, Lili ;
Vetter, Melissa R. ;
Kazazian, Haig H., Jr. .
MOLECULAR AND CELLULAR BIOLOGY, 2007, 27 (18) :6469-6483
[39]   Mapping the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition [J].
Goodier, John L. ;
Cheung, Ling E. ;
Kazazian, Haig H., Jr. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (15) :7401-7419
[40]   MOV10 RNA Helicase Is a Potent Inhibitor of Retrotransposition in Cells [J].
Goodier, John L. ;
Cheung, Ling E. ;
Kazazian, Haig H., Jr. .
PLOS GENETICS, 2012, 8 (10)