共 18 条
Characterizations of Lie derivations of triangular algebras
被引:88
作者:
Ji, Peisheng
[1
]
Qi, Weiqing
[2
]
机构:
[1] Qingdao Univ, Coll Math, Qingdao 266071, Peoples R China
[2] Qingdao Univ, Coll Informat Engn, Qingdao 266071, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Lie derivation;
Derivation;
Triangular algebra;
ALL-DERIVABLE POINTS;
CHARACTERIZING HOMOMORPHISMS;
OPERATOR;
D O I:
10.1016/j.laa.2011.02.048
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let T be a triangular algebra over a commutative ring R. In this paper, under some mild conditions on T, we prove that if delta : T -> T is an R-linear map satisfying delta([x, y]) = [delta(x), y] + [x, delta(y)] for any x, y is an element of T with xy = 0 (resp. xy = p, where p is the standard idempotent of T), then delta = d + tau, where d is a derivation of T and tau : T -> Z(T) (where Z(T) is the center of T) is an R-linear map vanishing at commutators [x. y] with xy = 0 (resp. xy = P). Lie derivation (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1137 / 1146
页数:10
相关论文