Lag projective synchronization of fractional-order delayed chaotic systems

被引:57
作者
Zhang, Weiwei [1 ]
Cao, Jinde [2 ]
Wu, Ranchao [3 ]
Alsaadi, Fuad E. [4 ]
Alsaedi, Ahmed [5 ]
机构
[1] Anqing Normal Univ, Sch Math & Computat Sci, Anqing 246133, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[3] Anhui Univ, Sch Math, Hefei 230039, Anhui, Peoples R China
[4] King Abdulaziz Univ, Dept Elect & Comp Engn, Fac Engn, Jeddah 21589, Saudi Arabia
[5] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2019年 / 356卷 / 03期
基金
中国国家自然科学基金;
关键词
GENERALIZED NEURAL-NETWORKS; EXPONENTIAL STABILITY; DISSIPATIVITY;
D O I
10.1016/j.jfranklin.2018.10.024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the lag projective synchronization of fractional-order delayed chaotic systems. The lag projective synchronization is achieved through the use of comparison principle of linear fractional equation at the presence of time delay. Some sufficient conditions are obtained via a suitable controller. The results show that the slave system can synchronize the past state of the driver up to a scaling factor. Finally, two different structural fractional order delayed chaotic systems are considered in order to examine the effectiveness of the lag projective synchronization. Feasibility of the proposed method is validated through numerical simulations. (C) 2018 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1522 / 1534
页数:13
相关论文
共 40 条
  • [1] Lyapunov functions for fractional order systems
    Aguila-Camacho, Norelys
    Duarte-Mermoud, Manuel A.
    Gallegos, Javier A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) : 2951 - 2957
  • [2] Complex dynamics and phase synchronization in spatially extended ecological systems
    Blasius, B
    Huppert, A
    Stone, L
    [J]. NATURE, 1999, 399 (6734) : 354 - 359
  • [3] Exponential H a filtering analysis for discrete-time switched neural networks with random delays using sojourn probabilities
    Cao JinDe
    Rakkiyappan, R.
    Maheswari, K.
    Chandrasekar, A.
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2016, 59 (03) : 387 - 402
  • [4] Cao JD, 2016, CIRC SYST SIGNAL PR, V35, P811, DOI 10.1007/s00034-015-0105-6
  • [5] Projective synchronization of a class of delayed chaotic systems via impulsive control
    Cao, Jinde
    Ho, Daniel W. C.
    Yang, Yongqing
    [J]. PHYSICS LETTERS A, 2009, 373 (35) : 3128 - 3133
  • [6] Secure digital communication using controlled projective synchronisation of chaos
    Chee, CY
    Xu, DL
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 23 (03) : 1063 - 1070
  • [7] Lag projective synchronization in fractional-order chaotic (hyperchaotic) systems
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    [J]. PHYSICS LETTERS A, 2011, 375 (21) : 2099 - 2110
  • [8] Adaptive control of multiple chaotic systems with unknown parameters in two different synchronization modes
    Chen, Xiangyong
    Cao, Jinde
    Qiu, Jianlong
    Alsaedi, Ahmed
    Alsaadi, Fuad E.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [9] Chaos in fractional ordered Liu system
    Daftardar-Gejji, Varsha
    Bhalekar, Sachin
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) : 1117 - 1127
  • [10] Deng WH, 2007, NONLINEAR DYNAM, V48, P409, DOI [10.1007/s11071-006-9094-0, 10.1007/s11071 -006-9094-0]