Adaptive hybridizable discontinuous Galerkin methods for nonstationary convection diffusion problems

被引:8
作者
Leng, Haitao [1 ]
Chen, Yanping [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510000, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
HDG method; A posteriori error estimator; Convection diffusion equation; Nonstationary; Adaptive algorithm; FINITE-ELEMENT METHODS; POSTERIORI ERROR ESTIMATION; RESIDUAL-FREE BUBBLES; HDG METHODS; ADVECTION; DISCRETIZATION; EQUATIONS; RECONSTRUCTION; APPROXIMATIONS; STABILIZATION;
D O I
10.1007/s10444-020-09795-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with adaptive hybridizable discontinuous Galerkin methods of nonstationary convection diffusion problems. We address first the spatially semidiscrete case and then move to the fully discrete scheme by introducing a backward Euler discretization in time. More specifically, the computable a posteriori error estimator for the time-dependent problem is obtained by using the idea of elliptic reconstruction and conforming-nonconforming decomposition. In view of the method that has been employed in the time-dependent problem, we also obtain a computable a posteriori error estimator for the fully discrete scheme. Finally, two examples show the performance of the obtained a posteriori error estimators.
引用
收藏
页数:23
相关论文
共 54 条
[31]   AN ANALYSIS OF HDG METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS [J].
Fu, Guosheng ;
Qiu, Weifeng ;
Zhang, Wujun .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01) :225-256
[32]   A POSTERIORI ERROR CONTROL FOR DISCONTINUOUS GALERKIN METHODS FOR PARABOLIC PROBLEMS [J].
Georgoulis, Emmanuil H. ;
Lakkis, Omar ;
Virtanen, Juha M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (02) :427-458
[33]  
Guermond JL, 1999, RAIRO-MATH MODEL NUM, V33, P1293
[34]   Discontinuous hp-finite element methods for advection-diffusion-reaction problems [J].
Houston, P ;
Schwab, C ;
Süli, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :2133-2163
[35]  
Houston P, 2001, MATH COMPUT, V70, P77, DOI 10.1090/S0025-5718-00-01187-X
[36]  
Johnson C., 1987, Numerical Solution of Partial Differential Equations by the Finite Element Method
[37]   A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems [J].
Karakashian, OA ;
Pascal, F .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (06) :2374-2399
[38]   Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems [J].
Karakashian, Ohannes A. ;
Pascal, Frederic .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (02) :641-665
[39]   Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems [J].
Lakkis, Omar ;
Makridakis, Charalambos .
MATHEMATICS OF COMPUTATION, 2006, 75 (256) :1627-1658
[40]   A posteriori error estimates for a nonconforming finite element discretization of the heat equation [J].
Nicaise, S ;
Soualem, N .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (02) :319-348