Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage

被引:62
作者
Ma, Lianbo [1 ,2 ]
Chen, Renpeng [1 ,2 ]
Hu, Yi [1 ,2 ]
Zhu, Guoyin [1 ,2 ]
Chen, Tao [1 ,2 ]
Lu, Hongling [1 ,2 ]
Liang, Jia [1 ,2 ]
Tie, Zuoxiu [1 ,2 ,3 ]
Jin, Zhong [1 ,2 ]
Liu, Jie [1 ,2 ,4 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, Key Lab Mesoscop Chem MOE, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Collaborat Innovat Ctr Chem Life Sci, Sch Chem & Chem Engn, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Coll Engn & Appl Sci, Nanjing 210093, Jiangsu, Peoples R China
[4] Duke Univ, Dept Chem, Durham, NC 27708 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
HIGH-PERFORMANCE ANODE; LI-ION BATTERIES; CARBIDE-DERIVED CARBON; N-DOPED GRAPHENE; ELECTRODE MATERIALS; HARD CARBON; REVERSIBLE CAPACITY; ENERGY-STORAGE; NANOFIBER WEBS; LOW-COST;
D O I
10.1039/c6nr06307a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To improve the energy storage performance of carbon-based materials, considerable attention has been paid to the design and fabrication of novel carbon architectures with structural and chemical modifications. Herein, we report that hierarchical porous nitrogen-rich carbon (HPNC) nanospheres originating from acidic etching of metal carbide/carbon hybrid nanoarchitectures can be employed as high-performance anode materials for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The structural advantages of HPNC nanospheres are that the exceptionally-high content of nitrogen (17.4 wt%) can provide abundant electroactive sites and enlarge the interlayer distance (similar to 3.5 angstrom) to improve the capacity, and the large amount of micropores and mesopores can serve as reservoirs for storing lithium/sodium ions. In LIBs, HPNC based anodes deliver a high reversible capacity of 1187 mA h g(-1) after 100 cycles at 100 mA g(-1), a great rate performance of 470 mA h g(-1) at 5000 mA g(-1), and outstanding cycling stabilities with a capacity of 788 mA h g(-1) after 500 cycles at 1000 mA g(-1). In SIBs, HPNC based anodes exhibit a remarkable reversible capacity of 357 mA h g(-1) at 100 mA g(-1) and high long-term stability with a capacity of 136 mA h g(-1) after 500 cycles at 1000 mA g(-1).
引用
收藏
页码:17911 / 17918
页数:8
相关论文
共 72 条
[1]   Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High-Performance Li-Ion Batteries and Oxygen Reduction Reaction [J].
Ai, Wei ;
Luo, Zhimin ;
Jiang, Jian ;
Zhu, Jianhui ;
Du, Zhuzhu ;
Fan, Zhanxi ;
Xie, Linghai ;
Zhang, Hua ;
Huang, Wei ;
Yu, Ting .
ADVANCED MATERIALS, 2014, 26 (35) :6186-+
[2]   Hard Carbon Originated from Polyvinyl Chloride Nanofibers As High-Performance Anode Material for Na-Ion Battery [J].
Bai, Ying ;
Wang, Zhen ;
Wu, Chuan ;
Xu, Rui ;
Wu, Feng ;
Liu, Yuanchang ;
Li, Hui ;
Li, Yu ;
Lu, Jun ;
Amine, Khalil .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (09) :5598-5604
[3]   Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements [J].
Bommier, Clement ;
Luo, Wei ;
Gao, Wen-Yang ;
Greaney, Alex ;
Ma, Shengqian ;
Ji, Xiulei .
CARBON, 2014, 76 :165-174
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[6]   Superior cycle stability of graphene nanosheets prepared by freeze-drying process as anodes for lithium-ion batteries [J].
Cai, Dandan ;
Wang, Suqing ;
Ding, Liangxin ;
Lian, Peichao ;
Zhang, Shanqing ;
Peng, Feng ;
Wang, Haihui .
JOURNAL OF POWER SOURCES, 2014, 254 :198-203
[7]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[8]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[9]   Intrinsically Coupled 3D nGs@CNTs Frameworks as Anode Materials for Lithium-Ion Batteries [J].
Chen, Liang ;
Jin, Xin ;
Wen, Ying ;
Lan, Haichuang ;
Yu, Xuebin ;
Sun, Dalin ;
Yi, Tao .
CHEMISTRY OF MATERIALS, 2015, 27 (21) :7289-7295
[10]   Hollow Carbon-Nanotube/Carbon-Nanofiber Hybrid Anodes for Li-Ion Batteries [J].
Chen, Yuming ;
Li, Xiaoyan ;
Park, Kyusung ;
Song, Jie ;
Hong, Jianhe ;
Zhou, Limin ;
Mai, Yiu-Wing ;
Huang, Haitao ;
Goodenough, John B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (44) :16280-16283