ON AUTOMORPHIC POINTS IN POLARIZED DEFORMATION RINGS

被引:8
作者
Allen, Patrick B. [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
GALOIS REPRESENTATIONS; MODULAR-FORMS; CONJECTURE; FONTAINE; DENSITY;
D O I
10.1353/ajm.2019.0003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a fixed mod p automorphic Galois representation, p-adic automorphic Galois representations lifting it determine points in universal deformation space. In the case of modular forms and under some technical conditions, Bockle showed that every component of deformation space contains a smooth modular point, which then implies their Zariski density when coupled with the infinite fern of Gouvea-Mazur. We generalize Bockle's result to the context of polarized Galois representations for CM fields, and to two dimensional Galois representations for totally real fields. More specifically, under assumptions necessary to apply a small R = T theorem and an assumption on the local mod p representation, we prove that every irreducible component of the universal polarized deformation space contains an automorphic point. When combined with work of Chenevier, this implies new results on the Zariski density of automorphic points in polarized deformation space in dimension three.
引用
收藏
页码:119 / 167
页数:49
相关论文
共 62 条
[1]   DEFORMATIONS OF POLARIZED AUTOMORPHIC GALOIS REPRESENTATIONS AND ADJOINT SELMER GROUPS [J].
Allen, Patrick B. .
DUKE MATHEMATICAL JOURNAL, 2016, 165 (13) :2407-2460
[2]   Finiteness of unramified deformation rings [J].
Allen, Patrick B. ;
Calegari, Frank .
ALGEBRA & NUMBER THEORY, 2014, 8 (09) :2263-2272
[3]  
[Anonymous], 2001, ANN MATH STUD
[4]   Potential automorphy and change of weight [J].
Barnet-Lamb, Thomas ;
Gee, Toby ;
Geraghty, David ;
Taylor, Richard .
ANNALS OF MATHEMATICS, 2014, 179 (02) :501-609
[5]  
Barnet-Lamb T, 2013, MATH RES LETT, V20, P81
[6]   Serre weights for rank two unitary groups [J].
Barnet-Lamb, Thomas ;
Gee, Toby ;
Geraghty, David .
MATHEMATISCHE ANNALEN, 2013, 356 (04) :1551-1598
[7]   CONGRUENCES BETWEEN HILBERT MODULAR FORMS: CONSTRUCTING ORDINARY LIFTS [J].
Barnet-Lamb, Thomas ;
Gee, Toby ;
Geraghty, David .
DUKE MATHEMATICAL JOURNAL, 2012, 161 (08) :1521-1580
[8]  
Berthelot P., PREPRINT
[9]   The generic fiber of the universal deformation space associated to a tame Galois representation [J].
Bockle, G .
MANUSCRIPTA MATHEMATICA, 1998, 96 (02) :231-246
[10]   On the density of modular points in universal deformation spaces [J].
Böckle, G .
AMERICAN JOURNAL OF MATHEMATICS, 2001, 123 (05) :985-1007