An Arabidopsis Mitochondrial Uncoupling Protein Confers Tolerance to Drought and Salt Stress in Transgenic Tobacco Plants

被引:69
|
作者
Begcy, Kevin [1 ]
Mariano, Eduardo D. [1 ]
Mattiello, Lucia [1 ]
Nunes, Alessandra V. [2 ]
Mazzafera, Paulo [3 ]
Maia, Ivan G. [2 ]
Menossi, Marcelo [1 ]
机构
[1] Univ Estadual Campinas, Inst Biol, Lab Genoma Func, Dept Genet Evolucao & Bioagentes, Campinas, Brazil
[2] Univ Estadual Paulista, Inst Biociencias, Dept Genet, Botucatu, SP, Brazil
[3] Univ Estadual Campinas, Inst Biol, Dept Biol Vegetal, Campinas, Brazil
来源
PLOS ONE | 2011年 / 6卷 / 08期
基金
巴西圣保罗研究基金会;
关键词
ALTERNATIVE OXIDASE; EXPRESSION PROFILES; ELECTRON-TRANSPORT; OXIDATIVE STRESS; ABSCISIC-ACID; WATER-USE; COLD; SALINITY; RESPONSES; PHOTOSYNTHESIS;
D O I
10.1371/journal.pone.0023776
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Plants are challenged by a large number of environmental stresses that reduce productivity and even cause death. Both chloroplasts and mitochondria produce reactive oxygen species under normal conditions; however, stress causes an imbalance in these species that leads to deviations from normal cellular conditions and a variety of toxic effects. Mitochondria have uncoupling proteins (UCPs) that uncouple electron transport from ATP synthesis. There is evidence that UCPs play a role in alleviating stress caused by reactive oxygen species overproduction. However, direct evidence that UCPs protect plants from abiotic stress is lacking. Methodology/Principal Findings: Tolerances to salt and water deficit were analyzed in transgenic tobacco plants that overexpress a UCP (AtUCP1) from Arabidopsis thaliana. Seeds of AtUCP1 transgenic lines germinated faster, and adult plants showed better responses to drought and salt stress than wild-type (WT) plants. These phenotypes correlated with increased water retention and higher gas exchange parameters in transgenic plants that overexpress AtUCP1. WT plants exhibited increased respiration under stress, while transgenic plants were only slightly affected. Furthermore, the transgenic plants showed reduced accumulation of hydrogen peroxide in stressed leaves compared with WT plants. Conclusions/Significance: Higher levels of AtUCP1 improved tolerance to multiple abiotic stresses, and this protection was correlated with lower oxidative stress. Our data support previous assumptions that UCPs reduce the imbalance of reactive oxygen species. Our data also suggest that UCPs may play a role in stomatal closure, which agrees with other evidence of a direct relationship between these proteins and photosynthesis. Manipulation of the UCP protein expression in mitochondria is a new avenue for crop improvement and may lead to crops with greater tolerance for challenging environmental conditions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Expression of Arabidopsis Hexokinase in Tobacco Guard Cells Increases Water-Use Efficiency and Confers Tolerance to Drought and Salt Stress
    Lugassi, Nitsan
    Yadav, Brijesh Singh
    Egbaria, Aiman
    Wolf, Dalia
    Kelly, Gilor
    Neuhaus, Efrat
    Raveh, Eran
    Carmi, Nir
    Granot, David
    PLANTS-BASEL, 2019, 8 (12):
  • [22] A Moso bamboo gene VQ28 confers salt tolerance to transgenic Arabidopsis plants
    Xinran Cheng
    Yujiao Wang
    Rui Xiong
    Yameng Gao
    Hanwei Yan
    Yan Xiang
    Planta, 2020, 251
  • [23] A Moso bamboo gene VQ28 confers salt tolerance to transgenic Arabidopsis plants
    Cheng, Xinran
    Wang, Yujiao
    Xiong, Rui
    Gao, Yameng
    Yan, Hanwei
    Xiang, Yan
    PLANTA, 2020, 251 (05)
  • [24] OVEREXPRESSION OF MsDNAJ-PROTEIN ENHANCES DROUGHT TOLERANCE IN TRANSGENIC TOBACCO PLANTS
    Lee, Ki-Won
    Rahman, Md Atikur
    Ji, Hee Chung
    Kim, Ki-Yong
    Park, Hyung Soo
    Choi, Gi Jun
    Lee, Sang-Hoon
    JOURNAL OF ANIMAL AND PLANT SCIENCES, 2019, 29 (05): : 1442 - 1446
  • [25] Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice
    Vydehi Kanneganti
    Aditya Kumar Gupta
    Plant Molecular Biology, 2008, 66 : 445 - 462
  • [26] Overexpression of OsiSAP8, a member of stress associated protein (SAP) gene family of rice confers tolerance to salt, drought and cold stress in transgenic tobacco and rice
    Kanneganti, Vydehi
    Gupta, Aditya Kumar
    PLANT MOLECULAR BIOLOGY, 2008, 66 (05) : 445 - 462
  • [27] Expression of Finger Millet EcDehydrin7 in Transgenic Tobacco Confers Tolerance to Drought Stress
    Rajiv Kumar Singh
    Vivek Kumar Singh
    Sanagala Raghavendrarao
    Mullapudi Lakshmi Venkata Phanindra
    K. Venkat Raman
    Amolkumar U. Solanke
    Polumetla Ananda Kumar
    Tilak Raj Sharma
    Applied Biochemistry and Biotechnology, 2015, 177 : 207 - 216
  • [28] SsDHN, a dehydrin protein from Suaeda salsa, enhances salt stress tolerance in transgenic tobacco plants
    Li, Hui
    Zhang, Li
    Lin, Jingwei
    Chen, Shuisen
    Gao, Weiming
    Zhang, Jiayi
    Ma, Hui
    Zhong, Ming
    PLANT GROWTH REGULATION, 2023, 99 (02) : 299 - 312
  • [29] SsDHN, a dehydrin protein from Suaeda salsa, enhances salt stress tolerance in transgenic tobacco plants
    Hui Li
    Li Zhang
    Jingwei Lin
    Shuisen Chen
    Weiming Gao
    Jiayi Zhang
    Hui Ma
    Ming Zhong
    Plant Growth Regulation, 2023, 99 : 299 - 312
  • [30] Overexpression of a tobacco J-domain protein enhances drought tolerance in transgenic Arabidopsis
    Xia, Zongliang
    Zhang, Xiaoquan
    Li, Junqi
    Su, Xinhong
    Liu, Jianjun
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2014, 83 : 100 - 106