The sizes of optimal q-ary codes of weight three and distance four:: A complete solution

被引:14
作者
Chee, Yeow Meng [1 ,1 ,2 ]
Dau, Son Hoang [1 ]
Ling, Alan C. H. [3 ]
Ling, San [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637616, Singapore
[2] Natl Univ Singapore, Sch Comp, Dept Comp Sci, Singapore 117590, Singapore
[3] Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA
关键词
constant-weight codes; large sets with holes; sequences;
D O I
10.1109/TIT.2007.915885
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This correspondence introduces two new constructive techniques to complete the determination of the sizes of optimal q-ary codes of constant weight three and distance four.
引用
收藏
页码:1291 / 1295
页数:5
相关论文
共 29 条
  • [1] Constant weight codes and group divisible designs
    Blake-Wilson, S
    Phelps, KT
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 1999, 16 (01) : 11 - 27
  • [2] Bogdanova G., 2000, SERDICA MATH J, V26, P5
  • [3] Constructions for q-ary constant-weight codes
    Chee, Yeow Meng
    Ling, San
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (01) : 135 - 146
  • [4] Chen K, 1999, J COMB DES, V7, P441, DOI 10.1002/(SICI)1520-6610(1999)7:6<441::AID-JCD5>3.0.CO
  • [5] 2-W
  • [6] DING C, 2006, UNPUB BOUNDS NONBINA
  • [7] Optimal constant weight codes over Z(k) and generalized designs
    Etzion, T
    [J]. DISCRETE MATHEMATICS, 1997, 169 (1-3) : 55 - 82
  • [8] On the constructions of constant-weight codes
    Fu, FW
    Vinck, AJH
    Shen, SY
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) : 328 - 333
  • [9] On the Svanstrom bound for ternary constant-weight codes
    Fu, FW
    Klove, T
    Luo, Y
    Wei, VK
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (05) : 2061 - 2064
  • [10] GE G, 2002, AUSTRALAS J COMBIN, V25, P19