The sizes of optimal q-ary codes of weight three and distance four:: A complete solution

被引:14
作者
Chee, Yeow Meng [1 ,1 ,2 ]
Dau, Son Hoang [1 ]
Ling, Alan C. H. [3 ]
Ling, San [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637616, Singapore
[2] Natl Univ Singapore, Sch Comp, Dept Comp Sci, Singapore 117590, Singapore
[3] Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA
关键词
constant-weight codes; large sets with holes; sequences;
D O I
10.1109/TIT.2007.915885
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This correspondence introduces two new constructive techniques to complete the determination of the sizes of optimal q-ary codes of constant weight three and distance four.
引用
收藏
页码:1291 / 1295
页数:5
相关论文
共 29 条
[1]   Constant weight codes and group divisible designs [J].
Blake-Wilson, S ;
Phelps, KT .
DESIGNS CODES AND CRYPTOGRAPHY, 1999, 16 (01) :11-27
[2]  
Bogdanova G., 2000, SERDICA MATH J, V26, P5
[3]   Constructions for q-ary constant-weight codes [J].
Chee, Yeow Meng ;
Ling, San .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (01) :135-146
[4]  
Chen K, 1999, J COMB DES, V7, P441, DOI 10.1002/(SICI)1520-6610(1999)7:6<441::AID-JCD5>3.0.CO
[5]  
2-W
[6]  
DING C, 2006, UNPUB BOUNDS NONBINA
[7]   Optimal constant weight codes over Z(k) and generalized designs [J].
Etzion, T .
DISCRETE MATHEMATICS, 1997, 169 (1-3) :55-82
[8]   On the constructions of constant-weight codes [J].
Fu, FW ;
Vinck, AJH ;
Shen, SY .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) :328-333
[9]   On the Svanstrom bound for ternary constant-weight codes [J].
Fu, FW ;
Klove, T ;
Luo, Y ;
Wei, VK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (05) :2061-2064
[10]  
GE G, 2002, AUSTRALAS J COMBIN, V25, P19