Bayesian spatiotemporal inference in functional magnetic resonance imaging

被引:83
|
作者
Gössl, C
Auer, DP
Fahrmeir, L
机构
[1] Max Planck Inst Psychiat, NMR Study Grp, D-80804 Munich, Germany
[2] Univ Munich, Dept Stat, D-80539 Munich, Germany
关键词
functional magnetic resonance imaging; human brain mapping; MCMC; semiparametric models; spatiotemporal models;
D O I
10.1111/j.0006-341X.2001.00554.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mapping of the human brain by means of functional magnetic resonance imaging (fMRI) is an emerging held in cognitive and clinical neuroscience. Current techniques to detect activated areas of the brain mostly proceed in two steps. First, conventional methods of correlation. regression, and time series analysis are used to assess activation by a separate, pixelwise comparison of the fMRI signal time courses to the reference function of a presented stimulus. Spatial aspects caused by correlations between neighboring pixels are considered in a separate second step, if at all. The aim of this article is to present hierarchical Bayesian approaches that allow one to simultaneously incorporate temporal and spatial dependencies between pixels directly in the model formulation. For reasons of computational feasibility, models have to be comparatively parsimonious, without oversimplifying. We introduce parametric and semiparametric spatial and spatiotemporal models that proved appropriate and illustrate their performance applied to visual fMRI data.
引用
收藏
页码:554 / 562
页数:9
相关论文
共 50 条
  • [31] Clinical functional magnetic resonance imaging
    Hart, John, Jr.
    Rao, Stephen M.
    Nuwer, Marc
    COGNITIVE AND BEHAVIORAL NEUROLOGY, 2007, 20 (03) : 141 - 144
  • [32] Functional magnetic resonance imaging of the lung
    Mills, GH
    Wild, JM
    Eberle, B
    Van Beek, EJR
    BRITISH JOURNAL OF ANAESTHESIA, 2003, 91 (01) : 16 - 30
  • [33] Functional magnetic resonance imaging in neurology
    Auer Tibor
    Schwarcz Attila
    Horvath Reka A.
    Barsi Peter
    Janszky Jozsef
    IDEGGYOGYASZATI SZEMLE-CLINICAL NEUROSCIENCE, 2008, 61 (1-2): : 16 - 23
  • [34] Inhibition and functional magnetic resonance imaging
    Ritter, P
    Villringer, A
    BRAIN ACTIVATION AND CBF CONTROL, PROCEEDINGS, 2002, 1235 : 213 - 222
  • [35] A primer on functional magnetic resonance imaging
    Brown, Gregory G.
    Perthen, Joanna E.
    Liu, Thomas T.
    Buxton, Richard B.
    NEUROPSYCHOLOGY REVIEW, 2007, 17 (02) : 107 - 125
  • [36] Functional magnetic resonance imaging and dementia
    Giesel, FL
    Hempel, A
    Schönknecht, P
    Wüstenberg, T
    Weber, MA
    Schröder, J
    Essig, M
    RADIOLOGE, 2003, 43 (07): : 558 - +
  • [37] Update - functional Magnetic Resonance Imaging
    Grefkes, Christian
    Eickhof, Simon
    Hensel, Lukas
    KLINISCHE NEUROPHYSIOLOGIE, 2024, 55 (04) : 236 - 246
  • [38] Functional nanoparticles for magnetic resonance imaging
    Mao, Xinpei
    Xu, Jiadi
    Cui, Honggang
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2016, 8 (06) : 814 - 841
  • [39] A Primer on Functional Magnetic Resonance Imaging
    Gregory G. Brown
    Joanna E. Perthen
    Thomas T. Liu
    Richard B. Buxton
    Neuropsychology Review, 2007, 17 : 107 - 125
  • [40] An introduction to functional magnetic resonance imaging
    Burton, MW
    Small, SL
    NEUROLOGIST, 1999, 5 (03) : 145 - 158