Epitaxially Textured Pr0.6Ca0.4MnO3 Thin Films Under Considerably Low Substrate Temperature

被引:4
作者
Nyman, M. [1 ]
Elovaara, T. [1 ]
Tikkanen, J. [1 ]
Majumdar, S. [1 ,2 ]
Huhtinen, H. [1 ]
Paturi, Petriina [1 ]
机构
[1] Univ Turku, Dept Phys & Astron, Wihuri Phys Lab, FI-20014 Turku, Finland
[2] Aalto Univ, Sch Sci, Dept Appl Phys, NanoSpin, FI-00076 Aalto, Finland
来源
20TH INTERNATIONAL CONFERENCE ON MAGNETISM, ICM 2015 | 2015年 / 75卷
关键词
Small-bandwidth manganite; PCMO; Thin films; PLD; Substrate temperature; Growth mechanism; CHARGE-ORDERED STATE; PEROVSKITE MANGANITE; METAL TRANSITION; MAGNETIC-FIELD; PR1-XCAXMNO3; MAGNETORESISTANCE; NANOPARTICLES; STRAIN; MN3O4;
D O I
10.1016/j.phpro.2015.12.180
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report the growth of well-crystallized and epitaxially textured Pr0.6Ca0.4MnO3 thin films on SrTiO3 substrates by pulsed laser deposition at considerably low substrate temperatures, as low as 450 degrees C, without high-temperature post-annealing treatments. Although a strong ferromagnetic interaction as well as a large irreversible metamagnetic transition with a training effect have been observed for films grown at 450 degrees C, the in-plane and out-of-plane lattice ordering is slightly improved with increasing substrate temperature. Therefore, a lowest magnetic field of 2 T for melting the insulating charge-ordering state at 70 K has been observed for films grown with the substrate temperature between 550 degrees C and 600 degrees C. The formation and growth of Pr0.6Ca0.4MnO3 on SrTiO3 substrate at exceptionally low substrate temperature is qualitatively modelled by the combination of the kinetic energies and redox potentials of the components of the ablation plasma, while the heat flow from the substrate is assumed to be less important.
引用
收藏
页码:1122 / 1132
页数:11
相关论文
共 39 条
[1]   Low-temperature synthesis of Hausmannite Mn3O4 [J].
Al Sagheer, FA ;
Hasan, MA ;
Pasupulety, L ;
Zaki, MI .
JOURNAL OF MATERIALS SCIENCE LETTERS, 1999, 18 (03) :209-211
[2]  
Beaud P, 2014, NAT MATER, V13, P923, DOI [10.1038/nmat4046, 10.1038/NMAT4046]
[3]  
BRAILSFORD F, 1966, PHYS PRINCIPLES MAGN
[4]  
Coey J M. D., 2010, Magnetism and Magnetic Materials, P464, DOI DOI 10.1017/CBO9780511845000
[5]  
Duan F., 2005, INTRO CONDENSED MATT, V1
[6]   Melting of the charge-ordered state under substantially lower magnetic field in structurally improved Pr1-xCaxMnO3 (x=0.3-0.5) thin films [J].
Elovaara, T. ;
Ahlqvist, T. ;
Majumdar, S. ;
Huhtinen, H. ;
Paturi, P. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 381 :194-202
[7]   Action spectra of the two-stage photoinduced insulator-metal transition in Pr1-xCaxMnO3 [J].
Fiebig, M ;
Miyano, K ;
Satoh, T ;
Tomioka, Y ;
Tokura, Y .
PHYSICAL REVIEW B, 1999, 60 (11) :7944-7949
[8]   THEORY OF THE ROLE OF COVALENCE IN THE PEROVSKITE-TYPE MANGANITES [LA,M(II)]MNO3 [J].
GOODENOUGH, JB .
PHYSICAL REVIEW, 1955, 100 (02) :564-573
[9]   Grain-boundary effects on the magnetoresistance properties of perovskite manganite films [J].
Gupta, A ;
Gong, GQ ;
Xiao, G ;
Duncombe, PR ;
Lecoeur, P ;
Trouilloud, P ;
Wang, YY ;
Dravid, VP ;
Sun, JZ .
PHYSICAL REVIEW B, 1996, 54 (22) :15629-15632
[10]   CMR manganites: physics, thin films and devices [J].
Haghiri-Gosnet, AM ;
Renard, JP .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (08) :R127-R150