AFDet: Toward More Accurate and Faster Object Detection in Remote Sensing Images

被引:18
作者
Liu, Nanqing [1 ]
Celik, Turgay [1 ,2 ,3 ]
Zhao, Tingyu [1 ]
Zhang, Chao [4 ]
Li, Heng-Chao [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 611756, Peoples R China
[2] Univ Witwatersrand, Sch Elect & Informat Engn, ZA-2000 Johannesburg, South Africa
[3] Univ Agder, Fac Engn & Sci, N-4630 Kristiansand, Norway
[4] Sichuan Police Coll, Dept Traff Engn, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
Detectors; Feature extraction; Amplitude modulation; Remote sensing; Estimation; Training; Head; Anchor-free method; object detection; optical remote sensing images;
D O I
10.1109/JSTARS.2021.3128566
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Object detection in remote sensing imagery usually suffers from inaccurate target localization and bounding box regression uncertainty, mainly due to the varying sizes of objects and the complexity of the background. Most detectors address these challenges by adding various feature extraction modules, which increases the size and computational burden of the network. In this article, we propose a more accurate and faster detector named AFDet, which is composed of two parts: a backbone pretrained on ImageNet and a head that includes a center prediction branch (CPB), semantic supervision branch (SSB), and boundary estimation branch (BEB). CPB produces a keypoint heatmap using an elliptical Gaussian kernel to adapt to the ground truth with a large aspect ratio. SSB, which is used only during training, extracts extra keypoint features from boundary and interior points rather than only from the center point, thereby improving the quality of object localization. BEB predicts the distributions of the bounding box in four directions, which is further supervised by the focus loss, and the gather loss raises the box prediction accuracy. To verify the effectiveness and robustness of AFDet, we conduct extensive experiments on three widely used optical remote sensing object detection datasets, i.e., NWPU VHR-10, DIOR, and HRRSD, for which AFDet achieves state-of-the-art results.
引用
收藏
页码:12557 / 12568
页数:12
相关论文
共 45 条
  • [1] Carion Nicolas, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12346), P213, DOI 10.1007/978-3-030-58452-8_13
  • [2] Cross-Scale Feature Fusion for Object Detection in Optical Remote Sensing Images
    Cheng, Gong
    Si, Yongjie
    Hong, Hailong
    Yao, Xiwen
    Guo, Lei
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (03) : 431 - 435
  • [3] Multi-class geospatial object detection and geographic image classification based on collection of part detectors
    Cheng, Gong
    Han, Junwei
    Zhou, Peicheng
    Guo, Lei
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 98 : 119 - 132
  • [4] Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving
    Choi, Jiwoong
    Chun, Dayoung
    Kim, Hyun
    Lee, Hyuk-Jae
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 502 - 511
  • [5] Ship Detection in Large-Scale SAR Images Via Spatial Shuffle-Group Enhance Attention
    Cui, Zongyong
    Wang, Xiaoya
    Liu, Nengyuan
    Cao, Zongjie
    Yang, Jianyu
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 379 - 391
  • [6] Deformable Convolutional Networks
    Dai, Jifeng
    Qi, Haozhi
    Xiong, Yuwen
    Li, Yi
    Zhang, Guodong
    Hu, Han
    Wei, Yichen
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 764 - 773
  • [7] Everingham M., 2010, INT J COMPUT VISION, V88, P303, DOI DOI 10.1007/s11263-009-0275-4
  • [8] An Anchor-Free Method Based on Feature Balancing and Refinement Network for Multiscale Ship Detection in SAR Images
    Fu, Jiamei
    Sun, Xian
    Wang, Zhirui
    Fu, Kun
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 1331 - 1344
  • [9] Fast R-CNN
    Girshick, Ross
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1440 - 1448
  • [10] Rich feature hierarchies for accurate object detection and semantic segmentation
    Girshick, Ross
    Donahue, Jeff
    Darrell, Trevor
    Malik, Jitendra
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 580 - 587