SYMPLECTIC COHOMOLOGY AND A CONJECTURE OF VITERBO

被引:8
作者
Shelukhin, Egor [1 ]
机构
[1] Univ Montreal, Dept Math & Stat, CP 6128 Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Viterbo conjecture; Lagrangian submanifold; Spectral norm; C-0 symplectic topology; Symplectic cohomology; Loop space; FLOER HOMOLOGY; SPECTRAL INVARIANTS; PERSISTENT HOMOLOGY; COTANGENT BUNDLES; STRING TOPOLOGY; QUASIMORPHISMS; GEOMETRY; DUALITY; ALGEBRA; SPHERES;
D O I
10.1007/s00039-022-00619-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We identify a new class of closed smooth manifolds for which there exists a uniform bound on the Lagrangian spectral norm of Hamiltonian deformations of the zero section in a unit cotangent disk bundle. This settles a well-known conjecture of Viterbo from 2007 as the special case of T-n, which has been completely open for n > 1. Our methods are different and more intrinsic than those of the previous work of the author first settling the case n = 1. The new class of manifolds is defined in topological terms involving the Chas-Sullivan algebra and the BV-operator on the homology of the free loop space. It contains spheres and is closed under products. We discuss generalizations and various applications, to C-0 symplectic topology in particular.
引用
收藏
页码:1514 / 1543
页数:30
相关论文
共 69 条
[1]   On the Floer Homology of Cotangent Bundles (vol 59, pg 254, 2006) [J].
Abbondandolo, Alberto ;
Schwarz, Matthias .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (04) :670-691
[2]   Floer homology of cotangent bundles and the loop product [J].
Abbondandolo, Alberto ;
Schwarz, Matthias .
GEOMETRY & TOPOLOGY, 2010, 14 (03) :1569-1722
[3]   Simple homotopy equivalence of nearby Lagrangians [J].
Abouzaid, Mohammed ;
Kragh, Thomas .
ACTA MATHEMATICA, 2018, 220 (02) :207-237
[4]   Nearby Lagrangians with vanishing Maslov class are homotopy equivalent [J].
Abouzaid, Mohammed .
INVENTIONES MATHEMATICAE, 2012, 189 (02) :251-313
[5]   An open string analogue of Viterbo functoriality [J].
Abouzaid, Mohammed ;
Seidel, Paul .
GEOMETRY & TOPOLOGY, 2010, 14 (02) :627-718
[6]   Embeddings of free groups into asymptotic cones of Hamiltonian diffeomorphisms [J].
Alvarez-Gavela, D. ;
Kaminker, V ;
Kislev, A. ;
Kliakhandler, K. ;
Pavlichenko, A. ;
Rigolli, L. ;
Rosen, D. ;
Shabtai, O. ;
Stevenson, B. ;
Zhang, J. .
JOURNAL OF TOPOLOGY AND ANALYSIS, 2019, 11 (02) :467-498
[7]   Calabi quasimorphisms for the symplectic ball [J].
Biran, P ;
Entov, M ;
Polterovich, L .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2004, 6 (05) :793-802
[8]  
Biran P, 2021, ASTERISQUE, P7
[9]   Bounds on the Lagrangian spectral metric in cotangent bundles [J].
Biran, Paul ;
Cornea, Octav .
COMMENTARII MATHEMATICI HELVETICI, 2021, 96 (04) :631-691
[10]  
Bourgeois F, 2009, CRM PROC & LECT NOTE, V49, P45